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DETERMINATION OF THE ACOUSTIC PROPERTIES OF FROZEN SOILS

I. ULTRASONIC VELCCITIES OF DILATATIONAL WAVES IN FROZEN SOILS
by

K. Knuth, M. Smith, R. Martin and Y. Nakano

Introduction

Measuring the variation of the acoustic properties of solids under variable physical conditions
has become well established as an effective method for investigating the physical structure of
solids.

Although the acoustic properties of metals, plastics, and unfrozen earth materials have been
widely explored, little attention has been directed toward frozen earth materials in the past. Re-
cently there has been considerable interest in frozen earth because of military applications, such as
seismic monitoring and personnel sensor detection in cold environments, and construction engineering
applications, such as the Trans-Alaskan pipeline construction.

One of the most importiant acoustic properties of solids is the velocity of dilatational waves.
A summary of dilatational wave velocity data obtained in permafrost regions was compiled by
Barnes (1963). Eykov (1966) reviewed Russian works, Several laboratory studies on the subject
have been reported (Frolov, 1961; Mullet, 1961; Kaplar, 1963; Desai and Moore, 1967, Timur, 1968).
Frolov (1961) measured velocities of 30 kHz dilatational waves in four different types of frozen
soils (sand, clay, sandstone and silt) in the temperature range from -20°C to 20°C. Muller (1961)
measured the velocity in water-saturated sand and clay of various porosities as a function of
decreasing température. His resulis indicate that with inicreasing ice content the velocity decreases
for sand and increases for clay. Kaplar (1963) measured both dilatational and shear wave velocities
in various frozen earth materials in the temperature range from 0°C to - 20°C by the resonant bar
method, in which either flexural, longitudinal or torsional vibrations were induced by electromagnetic
means.

Recently Timur (1968) measured dilatational wave velocities in various earth materials between
26°C and -36°C hy the pulse first-arrival technique, in which the time required for an elastic wave
to traverse a sample of known length is determined. He measured velocities with both descending
and ascending temperature and found that the two measurements generally do not agree, the degree
of discrepancy depending on the specimen. It has recently been shown that freezing and thawing
bring about a dramatic redistribution of water and a reorientation of particles, particularly in fine-
grained earth media such as clay (Anderson and Hoekstra, 1965a and 1965b; Anderson and Tice,
1970). It is possible to consider a hysteresis of velocity reported by Timur (1968) as a result of
such structural change in the specimen.

This report covers the first phase of an investigation of the relationship between acoustic
properties of frozen soils and soil structure as well as constituents. The velocities of dilatational
waves in three standard soils were measured with the pulse first-arrival technique. A hysteresis of
velocities similar to that obtained by Timur was observed.
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Experimental Procedure

Sample preparatian

- Three standard rvpes of soils, 20-30 Ottawa sand, Hanover silt and Goodrich clay, were
tested under tully water-saturated conditior.s. Figure 1 shiows the gradation curves obtained
according 1o ASTM (American Society for Testing and Materials) test procedures. We prepared
circular cylindrical samples, eithier 2.5 cm diameter x about 15 cm length or 2.5 cm diameter x
about 90 ¢m length. To prepare sand or silt, dry soil was first packed into 1-inch Tygon tubing
encased in a copper jacket and was tamped or vibrated until a specified dry density was attained.
Then water was sucked into the sumple by the use of vacuum. To prepare clay, water-saturated
clay was packed into Tygon tubing in order to maintain uniform density throughout the sample.
After the ends of the tubing were sealed with aluminum plngs, the sample protected by the tubing
and the copper jucket was frozen. When the sample was ready for testing, the copper jacket was
removed and the plugs were replaced with transducer assemblies.
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Figure 1, Gradation curves for 20-30 Ottawa sand, Hanover silt, and Good-
rich clay. G, = specific gravity.

Temperature control

Copper-constautan thermoconples were inserted to the center of the sample to monitor tempera-
ture, To maintain a constant temperature during the experiment, a Forma Scientific | >del 2095
bath was used. The sample was placed in a cooling jacket, through which the cooling fluid was
circulated by a puwp via the bath, The temperature of the saumple was kept constant within +0.1 °C.

Velocity measurement

The velocities of propagating waves in the sample were measured with the pulse first-arrival
techuique (Kolsky, 1963). At either end of the sample a transducer of 0.5-inch-diameter x
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0.25-inch-thick PZT4, which was bonded to an aluminum disk 1 inch in diameter and 0.25 inch
thick with silver epoxy, was attached to the surface of the sample with a few drops of silicone
oil for better coupling. One of the transducers served as a transmitter and the other as a receiver.

A Hewlett Packard Model 214A pulse generator supplied pulses of about 1 second duration to
the transmitter with a repetition rate of 500 to 1000 pulses per second. The receiver, which was
connected to a Tektronix 50A dual-trace oscilloscope via a Krohn-Hite Model 3202 filter, displayed
the received signal, A filter was used in a bandpass mode passing 10 kHz to 1 MHz. The other
oscilloscope trace was used for a Computer Measurements Company Model A11 digital time delay
generator providing accurate measurements of arrival time with an error of less than 0.1 sec. Both
traces on the oscilloscope wers triggered by the pulse generator. This system was checked by the
use of a standard medium, such as water, copper or aluminum, prior to measurements on frozen soils.
All tests gave velocities within 1% of handbook values.

Accuracy of the pulse method

The behavior of elastic waves in any bounded medium necessarily entails various effects due
to the presence of the boundaries. The effects of boundaries in circular cylinders have been well

studied (Kolsky, 1963). Figure 2 depicts the theoretical group velocity of the first six axially
symmetric modaes in an aluminum rod 1.5 inches in diameter. The calculations were performed
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Figure 2. Group velocity versus frequency for a circular cylinder 1.5 in. in diameter, having a com-
pressional velocity of 6.42 km/sec. The expected ‘‘bar’’ velocity is 3.04 km/sec. The crosses
are observed group velocities in a 1.5 in. aluminum rod, 327.5 cm long.
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using handbook values for shear and dilatational velccities. The lowest mode approached the bac
velocity in the low-frequency limit. It is clear from Figure 2 that the mode structure of a cylindce
is fairly complex. The crosses represent cbservations of zroup arrival versus frequency taken,
with our apparatus, on a 327.5-cm aluminum rod, 1.5 inches in diameter, The primary uncertainty
in the data lies in the assigned frequency, which was obtained by a period measurement of
adjacent peaks. The agreement is quite satisfactory within the limits imposed by this error. The
spurious points at about 80 kHz may be attributable to mode coupling at the rod's support points
although we did not attempt to verify this.

As is seen in Figure 2, successively higher modes possess group velocity maxima which N
increase in both frequency and velocity. In a general way, these maxima approach the dilatational
velocity of an elastic medium increasingly closely. For example, the 14th mode possesses a maxi-
mum at 1,15 MHz and a velocity of 97% of dilatational velocity. |

In view of these cal~ulations dilatational wave travel-time measurements should be made at the
highest feasible frequency. Care shoula be taken to ensure operation in a region.whete the group
velocity is close enough to the dilatational velority to achieve the desired accuracy.

So far we have discussed the accuracy of the method applied for elastic solids. Since any
real material deviates from an ideal elastic solid in one way or another, the accuracy of the method
also depends on the anelastic behavior of the solids examined.

Results and Discussion
The results of the experiment are presented in Figures 3-5 where dilatational velocities are

plotted as a function of temperature. Originally we intended to evolve a technique that would
allow simultaneous measurement of both dilatational and shear velocities using long samples based
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Figure 3. Dilatational velocity vs temperature for Otiawa sand. The differences in density
and velocity reflect the difference in porosity.




w————re

e

5

ULTRASONIC VELOCITIES OF DILATATIONAL WAVES IN FROZEN SOILS

*Ae[2 Y211pooy) o] aimeladwa) sA £1190]94 [euonteIe[iq

D ‘@injosedwa]

‘¢ 2anFryg *8]24D2 9z2331j-mey] B Ul SIS8131SAY
aoNI0N “Ansolod ur 9oua13jJIp aY1 19931 5.3.20: pue A11SuUap ur $953ua1aj
=JIp 3Y ], °IIS 12A0OUBH 10j 3i1njeladwa) SA £1100]94A [euoniele[lq °‘§ aInSryg

L4 0 v- 8- 2l- 9l-
r T T L T q 1 i ' U 2l D ‘einjosedway
| v 0 t- 8- 2I- 9I- oz2-
_7 — v T T T T T T T T T T
(éj. . w1 06'28=1 gw3/6691:d o Az
- 91 01242 #20044° W2 900Gl =1 gwa/b ¢8'1=0 v
01942 MOyl ‘' w3 90°'Gl =T (wi/b¢gl=d o
| .
L 4oz LQN
s J
- cw/b 0g'1=d S
wIGe'9="1 .W -2'¢
g ve. 288 /7 usy
= [
3 i 412019
- ~
«0
2 o¢
- 872
I J
-0
L 2¢
1 1 I 1 i 1 i [ - 1 i
+— 9'¢
1 = 1
» » [ ] -




6 DETERMIN ATION OF THE ACOUSTIC PROPERTIES OF FROZEN SOILS

upon the theory of guided elastic waves in a cylinder. This effort has been unsuccessful due to
unexpacted high attenuation in the samples tested. For Ottawa sand and Hanover silt, 90-cm-long
samples barely allowed measurement of dilatational velocities in the frozen state, and did not
allow measurement in the unfrozen state. Ninety-cm-long Goodrich clay did not yield any reliable
measurement even in the frozen state. Despite the limited experimental data, we are able to
present the following observations.

Velocity versus temperature curves

The decrease in dilatational wave velocity as an initially frozen water-saturated soil is
thawed appears to be a direct consequence of the change in state of the water. Consider the soil
as a two-component mixture, that is, a granular framework whose interstitial spaces are filled
with water. A high-frequency wave traveling along any path through the sampl¢ will travel part of
the time through the crystalline framework and part of the time through either water or ice, depend-
ing on the temperature. Since the dilatational wave velocity is about 3.0 km/sec in polycrystalline
ice but only 1.49 km/sec in water, we expect that the travel time along the same path in a frozen
sample will be less than the corresponding travel time in the thawed sample. The velocity of a
wave propagating in the crystalline framework is essentially consiant over this temperature range.
Hence, the observed velocity for frozen soil should be greater th n for the same sample thawed.

In light of this explanation of the variations of dilatational velocity in saturated soil as a
function of temperature, it might be asked whether or not the observed change in velocity is in
some way proportional to the amount of water in the sample. This suggests that perhaps each
component contributes to the observed slowness in proportion to its relative abundance in the
sample and the average compressional wave velocity of the individual components. Averaging
techniques for two-component systems have been employed successfully to obtain compressibilities
and moduli of many minerals which are available only in small quantities or in finely divided
particles not suitable for bulk testing. They are first mixed with an isotropic material with known
elastic constants, The unkuown elastic parameter is then computed from the average properties
of the composite material (Anderson, 1963; Chung and Buessman, 1967; Brace et al, 1969). The
most notable method is to use Voigt and Reuss averages to obtain upper and lower bounds and then
select a composition for which the spread of the bounds is a minimum. These methods however
are not directly applicable in a straightforward way to the simple averaging of dilatational wave
velocities for a two-component system.

Timur (19.8) measured the dilatational wave velocity in water-saturated porous sandstone as
a function of temperature. He observed a change in velocity similar to the one we observed as the
temperature of tF= sample was increased from -24°C to +24°C. Moreover, only an insignificantly
small decrease in velocity was observed on a dry sandstone sampl~ as the temperature was raised
from below thie freezing point of water to room temperature. These observations also strongly
suggest that the change in dilatational velocity as a frozen sample is thawed is attributable solely
to the state of water in the pore spaces of the rock. Using an argument similar to the one we out-
lined above to explain the variation in velocity as our samples thawed, Timur (1968) proposed a
simple time-averaging method to compute the theoretical velocity of a two-component system based
on the percentage of each compunen! in the sample and the velocity of that component. This
technique assumes that the tiavel time for 3 dilatational wave through the sample is the travel
time for each component computed according to

1 A 1 -4
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where v, is the observed velocity for the sample, vy and v, are the velocities of each component,
and A is the relative volume of one component. For a water-saturated sample, the relative volume
of water present is equal to the porosity of the sample.

Applying eq 1 to his results, Timur found good agreement with his experimental results.
Typically the observed velocity fell within 5% of the predicted value. Our results on 20-30 Ottawa
sand with a porosity of 37.5% (Fig. 3) were compared with the predicted velocities obtained using
the time-averaging equation. For the frozen soil the predicted and observed values agreed to
better than 2%. However, for saturated soil above 0°C agreement was poor. The observed velocity
was 2.78 km/sec whereas the predicted value using time-averaging was not immediately apglicable
to the silt sample because the composition and relative abundance of the solid particles were not
known.

The inapplicability of the time-averaging technique to unfrozen, saturated soil presents a
difficulty. Why does the time-averaging method appear to be satisfactory for both frozen and un-
frozen porous rocks but only to frozen Ottawa sand? The fact that the compressional wave velocity
is less than the anticipated value based on time-averaging in thawed soil but in good agreement for
frozen soil suggests that the compressional velocity is largely determined by tne compressibility
of the interstitial water rather than by the compressibility of the mineral solids. It appears then
that for a consolidated and lithified elastic continuum, such as 2 porous rock, the solid and liquid
can be time-averaged in direct proportion tc cheir relative volumes to obtain a realistic value. In
the case of a non-lithified, unfrozen soil, however, time averaging does not seem to apply due to
the discontinuous nature of the mineral grains.

Hamilton (1970) studied the velocity of water-saturated marine sediments as a function of
porcsity and grain diameter. He found that the velocity typically increased from about 1.50 km/sec
to 1.86 km/sec as the porosity was decreased from 80 to 30%. A similar increase in velocity was
cbserved when the grain diameter was increared from ! tc 1000u. Applying the time-averaging
equation to Hamilton's results for sand produces no agreement between the predicted and observed
results. Our results and those obtained by Hamilton suggest that time averaging is not an applicable
method for predicting velocities in water-saturated soils. The breakdown of the time-averaging
approach to velocities when the solid minerals do not form an interconnected framework suggests

that further justification, on a sound physical basis, is required before time averaging can be
accepted wholeheartedly even for frozen soils.

Ideally we would like to have a single theory that would predict the velocity in both frozen and
unfrozen soils using easily measured properties of the components such as relative abundance,
mineral composition, velocity of the minerals, and other readily obtainable elastic properties.
Presently no such theory exists. As a major protion of our future research effort on the geophysical
properties of frozen soils, this problem will be analyzed in detail both empirically and analytically
to achieve a workable relation between porosity, mineral composition, water content and sample
velocity.

Hysteresis in the velocity during a freeze-thaw cycle

It is evident that a strong correlation exists between dilatatjional velocities and unfrozen water
content. Then it might be asked whether or not the observed hysteresis in the velocity during a
freeze-thaw cycle is also caused by the hysteresis of unfrozen water content. The low-temperature
phase composition of interfacial water has been a topic of continuing interesi. MNersesova and
Tsytovich (1963) conducted experimental investigations to determine the phase composition of water
in various frozen soils by calorimetric methods. Unfrozen water contents obtained by them for
typical non-saline soils are shown in Figure 6. In granular soil, pores are comparatively large and
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Figure 6. Unfrozen water contents in typical non--
saline soils: 1) quartz sand, 2) sandy loam, 3) loam,
4) clay, and 5) clay containing montmorillonite.

almost all of the water freezes at the freezing point of water. However, clay and silt have fine
pores, in which a significant portion of the water remains unfrozen in a liquid or semiliquid state.
Those observations are consistent with the velocity-temperature relation.

Several studies conceming phase composition have been reported. However, the hysteresis of
phase composition during a freeze-thaw cycle has not been discussed explicitly, because equilibrium
phase composition has been the main subject. Anderson and Hoekstra (1865a, 1965b) have recently
shown that freezing and thawing bring about a dramatic redistribution of water and a reorientation
of particles in clay. They studied the changes in apparent d (001) spacing in Wyoming bentonite
dwing the freeze-thaw cycle by X-ray diffraction. They found the hysteresis loop in the spacing
during the freeze-thaw cycle due mainly to supercooling, However, if, during cooling, the sample
was nucleated artificially the d (001) spacing dropped immediately and the cooling and warming
curves nearly coincided. The d (001) spacing indicates the amount of interlamellar water consti-
tuting the gel structure. Freezing altered the gel structure and most of the interlamellar water
was expelled on complete freezing; as a result, ice must form in extralamellar regions. If the
interlamellar water corresponds to the ’‘unfrozen’’ water (Anderson and Hoekstra, 1965a, 1965b),
the hysteresis of unfrozen water can occur most probably in laboratory experiments, where no control
on nucleation is made. Since almost no interlamellar water exists in granular sand, such as Ottawa
sand, it is consistent that we did not observe anv hysteresis in velocities for Ottawa sand,
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Although the unfrozen water content is one of the most important variables in determining
dilatational velocities in fine-grained frozen soils, determining the amount of unfrozen water is
quite elaborate. Efforts have been initiated to evolve a technique allowing simultaneous deter-
mination of acoustic velocities and unfrozen water contents.
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Il. DETERMINATION OF A LINEAR VISCOELASTIC CONSTITUTIVE EQUATION FOR
FROZEN EARTH MATERIALS BY THE USE OF THE RESONANCE COLUMN TECHNIQUE

by

Y. Nakano and H. Stevens

Introductiou

During the past decade considerable emphasis in soil mechanics research has been placed on
the behavior of soils under dynamic loading. This behavior depends strongly on the nature of
loading: stress, stress rate, frequency, etc. Consequently, various experimental techniques have
been developed to determine the dynamic behavior of soils subjected to a specific kind of loading.
Among these, the resonance column technique has been extensively used to investigate unfrozen
soils under relatively weak harmonic loading (stress less than 100 psi) in the frequency range of
107 - 10* Hz (Hardin and Richart, 1963; Hardin and Mossbarger, 1966; Hardin and Black, 1968;
Hardin and Drnevich, 1970).

In the resonance column method a cylindrical column of material is subjected to a steady
sinusoidal loading, eather in the torsional or longitudinal mode. When a specimer: of soil is under
vibrativnal loading, the stress-strain relation creates a hysteresis loop. Two parameters have been
used to define this relation (Hardin and Drnevich, 1970). These parameters are the modulus defined
by the rlope of a line through the ends of the loop, and the area of the loop, which is a measure of
the damping capacity of the soil. Another way of defining the stress-strain relation is to determine
the complex modulus according to linear viscoelastic theory (Lee, 1963; Hardin, 1965).

The dynamic behavior of frozen soils is less complex than that of unfrozen soils; but no
comprehensive description of either material has been obtained. One useful and practical approach
towards a quantitative description of dynamic behavior is determination of a constitutive relation
based upon mechanics of continua. Stevens (1967) used a linear viscoelastic model for interpreting
resonance column experiments and determined complex shear and Young's moduli. In his experi-
ments the mazimum dynamic stress in the specimen was varied from 0.1 psi to about 5.0 psi, where
the complex modulus was found to be weakly dependent on the stress level. Despite such non-linear
behavior in frozen soils, the linear viscoelastic constitutive equation is considered a good first
approximation under low stress loading. In the present work, efforts were made to determine the
simplest linear viscoelastic constitutive equation that can describe the dynamic behavior of frozen
soils under both torsional and longitudinal vibrations consistently. In practical applications we
encounter various types of disturbance: steady and unsteady disturbances, plane and surface waves,
and cylindrical and spherical waves. Once the constitutive equation is determined, it is possible
to predict the response of frozen soils subjected to such disturbances.

PRECEDING PAGE BLANK



12 DETERMINATION OF THE ACOUSTIC PROPERTIES OF FROZEN SOILS

Expu-imental Determinatiois of Cou plex Modulus

In a linear viscoelastic material, when the stress ¢ varies sinusoidally with time at an angulat
frequency w the strain ¢ varies with time at the same frequency but there is a phase lag 5 between
stress and strain, The stress and strain relation for linear viscoelastic solids is generally express-
ed by the following equation:

g = Ee (9

where E is defined as the complex Young's modulus and is a function of w. The complex shear
modulus C is defined similarly, We describe a method of determining these complex moduli in the
following.

Method of test

A vertical cylinder of soil is subjected to steady-state sinusoidal vibration in the torsional or
longitudinal mode at the lower base end with the other end free except for a light, relatively rigid
cap. The input and output stress waves are observed and measured by piezoelectric accelerometers
attached to the base plate and cap plate at each end of the specimen. The peak acceleration and
the frequency are recorded. The drive frequency may be any value above the so-called *‘rigid body
frequency’’ and within the limits of the drive motors, if the phase angle between input and output
waves can be accurately measured; otherwise, the specimen must be excited at a known resonance,
The ratio of output to input amplitudes and the frequency, together with the specimen properties of
density and length, are required to compute the desired parameters,

Apparatus

The complete test apparatus includes a device for holding the specimen, drive motors and
transduce:s for measuriag the response, control and readout instrumentation, and auxiliary molds and
equipment for specimen preparation., This apparatus has been discussed in detail by Hardin (1966)
and Stevens (1967). At present the apparatus does not include a pressure cell, and the specimens
are tested unconfined.

Computation of complex moduli and results

First we consider longitudinal vibration. If the wavelength of the standing wave is long in
comparison with the diameter of the specimen, a rod condition is approximately true, The equ-.tion
of motion for longitudinal vibration is:

% d%u
E — P

i @)
ox2 a2

where
E  complex Young’'s modulus
p  density of the medium
t time
u displacement along the coordinate x

X - coordinate (Lagrangian).
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At the driven end x = O the system is given a sinusoidal displacement, namely,
w0, t) = ugel® 3

At the other end x - L the effect of the mass of the cap resting on top of the specimen is con-
sidered;

2
Eau(.L, ) -y g“u(L, t)

C))
dx (9‘2
where
S = cross-sectional area of the specimen
m = end mass,

13

Solving eq 2 with the boundary conditions, eq 3 and 4, we obtain the following relationship for the

ratio of bar end displacements (or accelerations), z

. u(L t)l sec pL )
Iu(O z) 1 - ytanpL

where

In more detail (Norris and Young, 1970):

Re(z"!) = cosh (Etan )(cosf Q ¢sind) +

] ]
+ Qp £tan 5 cos € sin (Etan = ) (6a)
Im(z™!) = sinh (ﬁtan )(sinE + Q écosd) + ;
{
+ Q@ &tan g sin £ cos (ftan g) (6b)
where
5 - Im(E)
Re(E)
PN
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V,p - phase velocity = 4 ’S secg

m
pSL

The condition of specimen resonance occurs when the ratio z is a maximum. As the frequency
is increased from zero, the first maximum is the fundamental resonance and successive maximums

indicate the harmonics. For the condition of resonance, where z is a maximum and z~2 is a mjni-
mum,

4

d 9

— (z = 0,

Z ) )
Equations 5 and 7 may be solved simultaneously with a computer using an iterative process for

the expressions and tan (6/2). At sach resonance point we can determine the complex Young's

modulus {rom observed values of w and 2.

The equation for torsional vibration is perfectly analogous. In the torsional mode Q, isre-
placed by @, which is defined as

4
rop L

Q, - cPe™e 8)
r4,9L

where
r = radius of the specimen
r. = radius of the cap
Pe = density of the cap
L _ = length of the cap.

The dynamic stress in the sample varies along its length as a damped sine wave, with the
maximum at the node nearest the bottom or input end. At resonance, this node is very close to the
bottom plane of the sample and the stress computed for correlative purposes is computed for the
bottom plane.

It is difficult or impossible to accurately control the stress in the sample during the test be-
cause of the resonance phenomenon. Closest control can be obtained by keeping the input accelera-
tion level g constant. As g is directly proportional to frequency and a wide frequency range is
requir~1, it is not very practical to control g at a relatively high value,

Consequently, no attempt is made to keep either stress or g constant. Instead, the drive force
is held constant while the frequency is varied over its entire range. Then the drive force is in-
creased an arbitrary amount, and so on. Thus we ensure measurements over a range of stress levels
without knowing in advance what the values will be. '

The frequencies at which measursments are taken cannot be predetermined, as only the
resonant condition is used and resonam frequency varies with sample mass and stiffness. The first
four or five resonances are usually used.

It is desirable to determine the moduli and loss angles for a given frequency and a given stress
or strain, not only because these relationships are required, but to allow comparisons between values
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for different samples, To accomplish this, modulus and tan & are each plotted versus ‘he computed
dynamic stress at one resonance. A smooth curve is drawn through the points and the modulus of
tan & value picked off for a given stress. The resonance frequency is obtained by interpolating
between the two adjacent mearured frequencies. If, say, four resonances are used, four values at
four (requencies at a constant stress are obtained. A plot of modulus or tan & versus frequency is
then prepared and a smooth curve drawn through these points. A value for modulus or tan & for a
given frequency and a given stress can then be obtained, The same process is used to obtain
values for about three stress levels and at least three frequencies.

Usually, the test measurements plot in such a way that there is little question as to the shape
of the curve drawn through the points, However, scatter does occur, particularly for the tan &
measurements, Some guideliners are used in drawing the curves, It is assumed that the modulus
decreases or is constant with increasing stress and increases or is constant with increasing fre-
quency. Tan & is assumed to increase with increasing stress but there are no good guidelines for
the relationship to frequency. Usually, the trend is to a decrease with increasing frequency but at
times there is a strong trend to a maximum peak at a particular frequency within the test range.
The results of the experiment are presented in Table I. The specimens tested included several
standard frozen soils as well as polycrystalline ice. The foilowing variables are also listed in the
table:

L = length of specimen (cm)
D = diameter of specimen (cm)
Py = Wwet (total) density (g/cm”’)
W = water content (g water/g dry soil) (%)
pp = dry density (g/cm’)
Py = porosity (void volume/total volume) (%)
V4 = void ratio (void volume/dry soil volume) (=)
S = saturation (water) (%)
S; = saturation (ice) (%)
T = test temperature (°C)
f = frequency (kHz)
E* = absolute value of complex Young’'s modulus (Kbar)
le = phase velocity of longitudinal wave (km/sec)
G* = absolute value of complex sheat-modulus (Kbar)
V., = phase velocity of torsional wave (km/sec)
= dynamic stress imposed on the bottom circumference of the specimen (psi).
The values of E* and G* in the table are either interpolated or extrapolated from those at

resonance frequencies in order to show the properties of different frozen soils at the same frequencies,

The phase velocities, V, and V/ tpr &re computed based upon complex moduli £ and G respectively.
Gradation curves of the soils obtained using ASTM (American Society for Testing and Materials) test
procedures are also presented in Figure 7.

Despite the limited data it is possible to describe some general trends in the dynamic behavior
of frozen soils. Stevens (1967) found several important parameiers affecting such behavior: soil
type, ice content, void ratio and frequency.
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Table I.
L = 49,45 Pom 41,9
D= 70533 Vim 0.719
Pom  1.946 S.= 86,7
. ¥= 22,9 S:= 96.1
3N1953 FRUZEN wANCAI3PS: SILCD Fom 1,580 T = -3.89
£ | ¢ | vie | 7an& | e+ Vep | Ten ot
N,=  n.]
1.00 158 2,85 0,0230 67,2 1.96 0.067
2,00 167 2,93 0.0227 68,3 1.88 0,056
5,00 175 3.00 0.0215 720.3 490 0,045
19,0 177 3.02 0.0167 20,9 1.91 0.045"
L2 1.0 : ]
1.10 158 2,85 0.,0230 67.0 1.86 0,067
2,00 166 2,92 0.0227 68.3 1.87 0.056
5,00 175 3,00 0.0215 70.3 1.90 0,045
C\o= 5.0 a®
1,00 146 2,74 0,0230 62,9 1.80 0,067
2.00 164 2.90 0,0227 68,0 1.87 0,056
5,00 175 3,00 09,0215 69,7 1.89 0.0bs
10.0 177 3.01 0.0167 70.3 1.90 0.045
L= 50,8 Po= 34,0
D= 72,55 Vi= 0,516
fum 2,050 Su=m 90,2
W= 17.5 S:= 100.2
3N1052 PRO.IN 20-30 OT'PAJA 3AND b 1,79 T = - 3.89
r | _E* 1 ve | Tang | G* Vop | Tendr
n,= N.1
1.00 319 3.94 0,023 137 2,59 0,049
2,00 333 4,03 0,021 138 2,53 0,047
5,00 356 4,17 0,019 139 2,60 0,037
10.0 358 4,18 0,014 139 2,61 0,032
-m-g= loo _
1.00 | 319 3.9k 0,023 136 2,57 0,051
2.00 333 4,03 0,021 137 2,58 0,048
5,00 356 4,17 0,019 132 2,59 0,041
10,0 358 “b,18 0,014 139 2,60 0,037
m,.- 5.0
1,00 219 3.94 0,027 135 2.57 0,097
2,00 333 4,03 0,025 136 2,58 0,088
5,00 356 4,17 0,021 13?7 2,58 _0,063
10.0 358 4,18 0,014 138 2,59 0.041
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Table I (Cont'd).
L= 40,6 PBo= 68.1
D= 7,44 V= 2,130
fv- 10“33 Su= 83.6
. W= 66,0 S.:= 91,2
3N1028 7ROZEN PAIRBANKS SILT UNDISTURBED fo = 0.8619T = —9g,u44 -
¢ | E* N Tan §; [ c* | Vo | Tand:
0\.’- 0.1
0,50 | 121 2,90 0,024 42,6 1,72 0,072
1,00 121 . 2,91 0,030 42,9 _1.73 0,067
2,00 ] 122 2,92 0,038 b3 1,74 0,086
5.00 { 124 2,94 0,666 [T 1.76 0,041
= 1.0 i
0.50 | 121 2,90 0,028 42,5 1,72 0,075
1,00] 121 2.91 0,032 42,8 1,73 0,069
2,00 122 _2,91 0,039 43,4 1.74 0.058
5,00 123 2494 0,070 by ,3 1.76 0,041
G\-o- 5.0 .
0.50 | 121 2,90 0,060 42,4 _1.72 0,086
1.00 | 21 2,90 0,062 42,6 1.3 0,076
2,00 123 2,91 0,070 43,1 1.74 0,064
5,00 | 121 2,91 0,099 4.1 1475 0,042
D= 7.4 Vim 4,030
Jom 1,235 Sem B86.8
W= 130 Sim 947
3N1027 PROZZN FAIRBANKS SILT UNDISTURBZD fo =  0,5367T m — 9.l
¢ | E* 1 vee | 7ang | ¢ | Vep | Tend:
0\.- 0.1 '
0,50 973 2,81 0,018 35,3 1,69 0,064
1.00| 97.6 2,81 0,023 35,6 1,70 0,059
2,00 98,3 2,82 0,033 36,0 1.71 0,049
_So= 1.0 . )
0,50 97,0 2,80 0,027 35.3 1.69 0,064
1,00 97,4 2,81 0,032 35.6 1,70 0,059
2,00 98,2 2,82 0,041 | 36,0 1.7% 0,049
5,00 99,8 2484 0.052 36.3 1.72 0,044
— a.- 5.0
0.50 96,9 2,80 0.108 35.0 1.68 0.064
1.00 97.3 " 2,81 0.100 3543 1.69 0,061
2,00 98,0 2,82 0,083 35.8 1.70 0,055
5,00 99 4 2,84 0,060 36,4 1.72 0.054

17
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Table I (Cont'd).
L=142,1 p= 60,7
! fvm 1,552 Su= 80,3
W= 46,0 8i= B7.6
“N1026 7ROZ:N PAIRBANKS SILT UNDISTURBED /o™ 1,062 T = 9,44
t | g | vy ! mand | 6* | v | Tende
o‘\.ou 0.1
0,50] 135 2.95 | 0.024 49,3 1,78 0,062 |
1.00 135 2,95 0,023 49,6 1.79 0.060
2,00 135 2,95 0,028 50,0 1.80 0,055
5.00] 135 2,95 0,043 | _ 50,2 1.80 0,043
G‘.,= 100 o .
0,50 135 2,95 0,036 49,3 1.78 0,069
1.00] 135 2.95 0.037 49,6 1.79 0,066
2,00 135 2,95 0,040 50,0 1,80 0,059 |
5.00 1’5 T 2095 ooou 50-2 1'80 0.01&3
a.- 5.0
0,50 131 2,91 0,132 49,3 1.78 0,097
1.000. 132 2,92 0,122 49,5 1.79 0,090
2,00 133 2,93 0.092 49.8 1.79 0,073
5,00 134 2,94 0,045 49,9 1.79 0,043
D= Vim
cv - 009072 Swe
33 POLY2RYSTALLIN<+ I22 MaDI BY - Siw
I Faaazn;s wA-rlm ATOH 3904 A= Tw =9k
¢ | E* | v | 7andy | ¢* | Vv | Tand:
o0,= 0.1 ’
0,50 61.7 2,61 0,060 21.2 153 0,056
1.09 63.4 2,64 0,086 21,7 1.55 0,086
2,00 6.5 2,69 0,052 22.4 157 0,056
5,00 | 62.0 2,726 | 0,082 23,1 1,60 0,056
5‘-,2 100 ! } o
0,50 | 59.3 | 2,56 0.089 20.3 1.50 0.095
1.00 61.4 2,60 0,084 20,7 1.51 0.085
2,00 63.8 2,68 0,078 21.7 1.55 0,073
Gom 5.0
0.50 5645 2.51 0,270 18.7 1.45 0,340
1.00 | 58,6 2,55 0,254 19.4 1.47 | o0.270
2,00 61,4 2.61 0,220 20,6 1.51 0.155
5,00 66,2 2,70 0,146 22,2 1.57 0,077
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Table I (Cont’d).
L= 34,8 =
D = Vis=
° - S o= 0,9098 Sw=
. 3N1023 POLYCEY3STALLINS IC: MAD: BY W = i "
HAPID SRYSTALLIZATION 07 4ATSH  fo = T = <-9.4
| . £ | E* | vee | 7and | G* | WV | Tand:
o .= 0.1
1,00 98,8 3.12 0,055 29,0 1.78 0,017
2,00 | 88.8 3.12 0.041 29.2 1.79 0,015
5,001 88,8 3,12 0,020 29,3 1,80 0,013
-’J‘-'= 1.0
1,00 | 88.3 3.12 0.079 28,5 1.77 0,037
5,00 ] 88,3 3.11 0,027 29.3 179 0,014
Glem 5,0
1.00| 87.9 3.13 0.333 27.9 1.75 0,065
2,00 | 87.9 " 3.12 0,397 28,4 1,77 0.045
5,001 87,9 3,11 0,131 29,2 1:79 0.017

39.10 Pom 36.2
9.90 Vi= 0.568
1€.2 Si= 101.6

S EpUr
[ BB S ]

3N1019 7ROZ:N-100 LiBANON TILL 1.825 T = =94k
t | e | wvie 1 gen GJ‘__L G* | Ve | Tende

UL’- ol
0,50 | 228 3,26 0,105 89,3 2,04 0,040
. 1.00| 229 3.27 0,086 89.3 2,04 0,038
2,00 | 232 3,28 0,062 89.3 2,04 0.033
5,001 240 3,34 0,032 ol,5 2,10 0,018

L 9-'= 1.0 )

0,50 222 3,22 0,146 88,6 2,03 0.086
1,00 223 3,23 0,126 88,6 2,03 0.077
2,00 226 1 3.24 0,093 88.6 2,03 0,060
5,00 234 " 3.30 0,040 93.8 3.09 0.022

X a.- 5.0
0,50 | 216 3,20 0,370 87.9 2,03 0.317
1,00| 218 © 3,20 0,340 87.9 2,03 |- 0.277
2,00 221 1,22 N.2722 87.9 2.03 0,188
5,00 225 3,24 0,080 91.? 2,07 0.024
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Table I (Cont'd).
D = 9.888 g‘ - u80266
v - 1.753 1 ] o
,g = 10.2 sl- us.i
1617 PHOZIN, 100-200, OTTAWA SAND fom= 1,591 T = =9.44
r. £ E* I \'/T) ] Tan & | G* i Vep Tan d¢
mp- 001

0.50 9645 2,35 0,024 48,6 1.67 0.024
1.00 | 101 2,40 0,024 49.6 1.68 0,023

2,00 110 2,50 0,025 5.2 172 0,023

‘3.00 126 2.68 0.0‘40 56.“‘ d 1.79 0,022
R 5‘.,'—' 1\0 . .

0.50 95.5 2.33 " 0,060 48,3 1.66 0,062

1,00 99.3 2.38 0.060 Lol 1.68 0.083
2,00 108 2,49 0,060 51.4 1.71 0,041

5,00 125 "~ 2,68 0,060 56.1 1.79 0,028

G\o= 5.0

0.50 90,3 2,30 0.454 48,1 1,66 0,200

1.00 95.2 2.35 0,400 49,1 1.68 0,166

2,00 106 2,47 0.300 51,0 1.71 0,109

5,00 124 2,66 0,188 55.6 1.78 0,053

L= 38,19 h= 39,2
Dm 9,903 Vi= 0,645
,'- 1.966 s"- 900“'
W= 22,0 8Sim= 98,7
N1 014 PROZEN, 100-200, OTTAWA 3AND fo=  1.612 T =  =9,44
I E* 1 vy | ran& | et | vy Tan dt
ﬂ.' 0.1 '

0,50 263 3.71 0,029 105 2,31 0,032
1,00 263 3.66 0,029 105 2,3 0,030
[ 2.00] 263 3,66 0,029 105 2,31 0,028

5.00 263 3,66 0,029 105 2.31 0,024

. Nex= .0 ' B
| 0,50 263 3.66 0,074 105 2,31 0.135
| 1,00 263 3,66 0,074 105 2.31 0,120
2,00 263 3.66 0,074 105 2,31 0,094
5,00 263 3.66 0,074 105 2.1 0,024
O\py=50
1 0.50] 263 3.67 0.220 105 2.35 0.585
1,00 263 3.67 0,220 105 2.34 0,520
| 2.00 263 3,67 0,220 105 2.33 0,370
5,00 263 3.67 0,220 105 2.31 0,030
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Table I (Cont'd).
L 7.50 Pom 46,9
Jum 1.863 Sws  92.9
We 30.6 S;= 101.
1012 FROZEN SUPPIELD CLAY Pom 1.427 T= <9
i) e b v | Tan&g | G* | v | Tand
a\'P- 001
0,50 | 75.2 2,01 0,088 25,8 1,18 0.072
1.00 | 75.9 2,02 0,090 26,9 1.20 0,076
2,00 | 82.3 2.10 0.104 27.8 1.22 0,090
5,00 B1.7 2,10 0,146 29.8 1,27 0.170
R a,= 1.0 ’ i
| 0,50 | 75,2 2,00 | 0,320 25,8 1.18 0.105
1400 | 75,9 2,02 0,121 26,9 1,20 0.105
2,00 | 82,3 2,10 0.123 27.8 1.22 0.106
5,00 81,7 2,10 0,146 29,8 1.27 0.170
6\.- 5.0
‘().SO 752 2,02 0275 2508 1.18 0,157
1.00 75.9 " 2,03 0,250 26,9 1.20 0,160
2,00 82,3 2,11 0,202 27,8 1.22 0.175
- 5.00 81.7 2.10 0.124 29,8 1,27 0.195
7.63 .p,. 50.0
L 80  w= 0,962
o= 1.629 Sw= 51.6
W= 18.6 Siw  56.8
3N1007 PROZZN SUFPISLO CLAY fom 14370 Ta =9k
P TR 7P Y O T ) Tan §e
Mn,= 0.1
0.50 14,8 0,952 0,087 5,86 | 0.600 0.124
1.00 18,8 1.07 0.105 7.10 0.661 0.130
© 2,00 22,0 1.16 0.140 7,45 0,680 0,305
0N,z 1.0 d _ o
0,50 13.0 0.893 0,140 | 5.86 0.600 0.140
1,00 17.6 1,06 | 0.148 7.10 0.661 0,148
2,00 21.8 1.16 0.150 745 0.680 0.150
Com 5.0
0,501 10,8 0,821 0,360 5.2l 0,571 0.320
1,00 15,9 0.996 0,360 6.83 0.651 0,320
2,00 20,5 1.13 0.365 7.31 0,675 0.370
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U.S. Std. Sieve No.

4 10 40 200
100 'I'I'EIIT\, g ‘I'YII T LALE B B |
~
|
ro : RN : -
£ | | I N |
o 80 et — t t E
g o |
= b0 i ;\\ .
> | |
|
8 60 —T— : %
] b el AL Ne
£ r | | | \ | -
W | | | |
| | | |
E 40 T 1 T i
° ! ! ! | \
o L | | 1 ]
L~ I | I i
o b ! : \
o1 ! ! N
- : | \ : .
H = \ | |
OAllll}ll 1 i n thI | W wlala )
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Figure 7. Gradation curves.

For ice-saturated or almost saturated non-plastic frozen soils a strong correlation was found
between modulus and void ratio (Fig. 8, 9). Since such frozen soils have only two constituents,
soil minerals and ice, the moduli are bounded below by those of ice and above by those of rock.
The moduli of several standard rocks measured by Simmons and Brace (1965) are plotted in these
figures to show the upper bound.

Frozen soil specimens have a fundamental resor.ance of the order of 2.0 kHz longitudinally and
1.0 kHz torsionally. In this experiment soil was usually tested up to the third and fourth resonance.
Therefore, the range of frequency is about 1.0 kHz to 10 kHz. In this range the modulus increases
and tan & decreases with increasing frequency. Tan & is approximately a reciprocal of the quality
factor €, which is defined as the ratio of the energy carried by a wave to the energy dissipated per
radius of phase shift (Thurston, 1964) and is commonly used by seismologists (Jackson and Anderson,
1970). For ice-saturated frozen soils the correlation between @ and void ratio is not so strong as
that between modulus and void ratio.
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Q values for frozen soils were found in the range of 10-100. They are bounded below by
polycrystalline ice and above by solid rock, such as quartzite (Q = 250) and granite (@ = 70)
(Volarovich and Gurvitch, 1957).

Although many theories concerning the attenuation of stress waves in earth materials have
been proposed, none of them is definitive, The attenuation mechanism is difficult to pin down
even in the laboratory, where measurements can be made as a function of frequency, temperature,
pressure, purity, grain size, annealing history, etc. In the present work we used viscosity to
describe anelastic properties of frozen soils. When applied to solidn, this term usually means that
stress relief and deformation occur by some poorly understood process, which may be a combination
of several types of processes, and may result in linear or nonlinear internal friction of complicated
(or unknown) {requency dependence (Jackson and Anderson, 1970), Further efforts are required to
obtain complete understanding of attenuation in frozen soils.

Determination of Linear Viscoelastic Constitutive Equations from Measured Complex Modulus
The general constitutive equations of a linear viscoelastic solid are given as (Eringen, 1967)
Ro, 6, + Soy, = Pe Sy, + 2Q¢, 9)

where o, ¢ are stress and strain tensors respectively, and P, @, R and S are linear operators

defined as,

N
1
P -2 + % ,\ii (10a)
i=1 ot
Q=ypp+ X py— (10b)
i=1 gt
N .
3
R = a5 + 3 a; iy—- (10c)
i=1 gt
N .
4
S - By X B (10d)
i=1 gl

where A, p;, a, and ﬁi are constants.

Torsional mode

Theory. We deal only with circular cylindrical specimens and use cylindrical coordinates for
convenience, Let the coordinates be r, ¢ and z, with z being the axis of the cylindrical specimen,
and let the corresponding displacements be u, ug and u,. In the propagation of torsional waves, no
longitudinal or lateral displacement is to be expected and the motion is symmnetric about the axis of
the cylinder. Therefore, u, and u, must both vanish and we need to consider only the wave equation
for uy. If the torsional stress applied to the specimen varies sinusoidally with time and the strain
thus induced also varies sinusoidally but wit, a phase difference, then we may write the wave equa-
tion for viscoelastic materials as:
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3%u %
0 _ 20 (y
a® 922

where G is a complex shear modulus, p is the density of the specimen, and t is time,

The wave equation is also written in terms of the present linear viscoelastic model as:

3% do,
'atTo - azoz (128)
auo
Sog, = @ 5 (12b)

Among many alternatives we selected the following four-parameter model for torsional vibration:

d a2
Q = §y a—t + o &2 (13&)
d 6°
S = —_ e 13b
By + o Bo e (13b)

If ug and ag, are harmonic with an angular frequency w, then the complex shear modulus G is given
as

G =G, +iG, (19)

where . w2[p1 _ #2(30 _ ngz)]

= (15a)
1 GB
n By ~ 2) %]
G, - wipy Bo ng + How (15b)
Gy
Gy = (By - ﬁ2w2)2 + o, (15¢)

The phase velocity Vtp and the group velocity Vtg are obtained as follows:
( * o
V( = G— sec (—t) (16a)

- . d (16b)
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where

G¢* - |G] (17a)
aGt

G* -

w ™ (17b)

G

5 - tan~! _2

' n <Gl> (17¢)
aat

tw = —é;- (17d)

The values of constants yu,, u,, B, and S, are determined from the four observed variables, namely
the complex modulus and the loss factor L (= tan 8t). at any two distinct frequencies. Since it is
not generally expected that the model satisfies these four conditions exactly, the following scheme
is used. Suppose the observed modulus and the loss factor at two distinct frequencies are G“).
G®, LY, and L{* respectively; then find s, and u, which minimize the derivation V. defined as:

(G - 62 | (& - &
v, - (18)
t G2, @2

under the constraints

() _ ()

LY - Ly ‘ (19a)
2) 2

LB - L3 (19b)

where G, and Lsm are the complex modulus and the loss factor predicted by the model.

Results and discussion, The four parameters u,, uo, B, and ﬁ2 were computed as follows. We
used the observed modulus and the loss factors at 1.00 kHz and 2.00 kHz to compare the constitutive
equations of different frozen soils around 1.5 kHz frequency. Since eq 19a and 19b are linear in
terms of 3, and f3,, we solved these equations to substitute 4, and u, for B, and B, in eq 18. Now
V., is a function of u, and y, only; that is,

V, = V iy ) 20)

When Vl is 2 minimum, we have

th
F(Flo Fg) = m =0 (21a)
()Vt

o
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Suppose that (u{", 44 is an approximate solution and let 8u{!) and 85" be corrections
which we shall determine, Expanding F and G in a Taylor series and truncating after the first-
order, we get:

1
OF (WD, ) 1 OF (D, )
————————— " 8“2 ——————

Fb, by + EALY
1 2 1 a“l 6“2

=0 (22a)

3G (D, D)
_—
opy

1 1
1) BG(y(l ) y(z ))

G (D, uD) 4 5D
“(1 Ko duy v

8;1&

0. (22b)

This linear system in By(ll) and 8;1(21) gives the next approximation, y(lz) and #(22)- as

e

uiD o+ 8D (23a)

WD - D . @)

The above iterative procedure is repeated until we obtain p1q and o, Which minimize V. The
results of the computation are shown in Table II.

CGS units were used in the computation. For instance, stress was expressed in dynes/cm?
The computation was quite satisfactory. An absolute minimum value of V exists for all specimens
computed and convergence is rapid. In order to indicate the degree of approximation or error we
listed V'f in the table. The values of V'{‘ vary in the range of 10™* to 10°%, which is considered
satisfactory. In the general constitutive relation, eq 9, if all other constants except A,, p, and ﬁl
are vanishing and ﬁl is equal to unity as defined, eq 9 reduces to the elastic constitutive equation,
or Hooke's law in terms of an incremental strain resulting in an incremental stress, where A, and p,
are Lamé constants, Therefore, p,, B, and B, indicate a degree of deviation from elastic solid.
For ice-saturated or almost saturated non-plastic frozen soils a strong correl ation was found between
modulus and void ratio as described before. We plotted four parameters, p,, pg, By and By, versus
void ratio in order to find out some general trends (Fig. 10). It appears that a correlation exists
between either y, or p, and void ratio, but neither S, nor S, are affected by variations of void ratio,

Longitudinal mode

Theory. If the wavelength of the harmonic wave is long in comparison with the diameter of the
specimen, the equation of motion for longitudinal vibration in Cartesian coordinates is written as:

d%u %
E X - p X (24)
ox2 on®

where

o)
it

complex Young's modulus

density of the medium

©
[}

time

]

- displacement along x coordinate.
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Table Il. Values of constants for torsional mode.

(v} 38 1053

o

i (’\.78
o h,76
g 3.27
b =168
\‘: ' ‘3.2?

(") SN 1052

P

Rl 1038
. 1.hs
! 2.1h
1,33

\-"‘:‘ 1.31

31 56 1n28

Jp

b !"032
e 4,00
4‘*. 3.2“
7. =1 .’#3
V¢V‘ 5078

) 8W 1027

Ao

K 3. 8
M J.41
30 2.89
d. <1412
\/1‘/‘ u.sl

() SN 1026

Np

173 l&.98
Ah u.SS
.9~ -1 o?u
v 4,08

fs) SN 102h

t7lo

Al 2421
U 3,20
8 2,34
B =1,52
W 1.53

3N 1023

—~
N
—

ap

A 2.91
1 016
_16 -2.92
W 3.52

lanchaster Silt

0.5 1.0

x 10}0 A.?77 x 1010

x 10 h.76 x 104
¥ 102, 1.27 x 102
X Lo=> -1.99 x L0="

x 103 8,72 x 103
vttawa Sani

N.1 1.0

x 1011 1.36 x 1011
x 10° L.45 x 102
% 102, 2,26 x 10°
x 10°" -1.33 ¥ 10~
x 10-3 2,30 x 10~3
falrbanks Stlt

0.1 1,0

x 1050 4,31 ¥ 1oi°

x 10 4,06 x 10

x 102 3.37 x 1026
x 106 -1.50 x 10~
x 10-3 5.10 x 10~
Fairbanks Silt

0.1 1.0

x 1019 3.58 x 1030
x 10 3.1 x 10

x 102 2,89 x 1026
x 10=6 -1,12 x 10~
x 10°3 4,61 x 10~
fairbanks Silt

0.1 1.0

x 1010 4,99 x 10&0
x 104 4,64 x 103
x 102 3.06 x 10°
x 10~ -1.83 x 10

x 10-3 4,00 x 103
Polycrystalline lce

0.1 1.0

x 1oi° 2.12 x 10&0
x 102 3.28 x 10
x 10 .06 x 1026
x 107 -1,69 x 10~
x 102 2.18 x 10~2
Polyorystalline Ice

0.1 1.0

x 1010 2.87 x 1040

x 104 2,00 x 10,

x 10 2,01 x 10¢,

x 107 -9.91 x 10=

x 10-3

6.99 x 10-3

W E N
2D NN A
EENEIVA




LINEAR VISCOELASTIC CONSTITUTIVE EQUATION FOR FROZEN EARTH MATERIALS 29

|°.° | I T i LI L l 1 T | LIED BRI I A
AN o o px10" ]
r o f£,20.5x107*
i o Byx1073 ]
B s B,x10° T

o

T r]llll

J

Values of Canstants far Torsional Mode

o.l -
|
O52!0.")3 1027 IO'24
1 o il T N T
0.l 1.0 10.0
Vold Rotio

Figure 10. Values of constants for torsional mode vs void ratio.

In this case Oy is the applied stress and the other five components of stress are zero. The
first three equations in eq 9 thus become:

R +9) o,g = PA + 2Qe ; (25a)

Ro,, = PA + 2Q¢,, (25b)

l't’axx = PA + 2Q(zz. (25¢)
Eliminating fyy and €,, from eq 25, we obtain the following equation:

QR + ) + PSla,, - (3PQ + 2Q%)«,,. (26)

The operators @ and S have been determined and the operators P and R are now to be determined
from the longitudinal vibration tests. The determination of P and R is more elaborate than the
determination of @ and S, since restrictions have already been imposed on the former in relation to
the latter.

We intend to introduce four new parameters to define P and Q. There are several ways of
choosing such parameters. In the general constitutive relation, eq 9, if all other constants except
Al. pq and B, are vanishing and ﬁl is equal to unity as already defined, eq 9 reduces to the elastic
constitutive equation, or Hooke's law in terms of an incremental strain resulting in an incremental
stress, where A, and p; are Lamé constants. It is anticipated that the dynamic properties of frozen
soils do not deviate markedly from those of an elastic solid. Thus the parameter A, is expected to
play an important role in the operator P. We choose two models defined by two four-parameter groups,
()\0, Ay @y, ap) and (Al, )‘2' aj, a2). Now we have
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] 9%
P = Ay + Ay — 4 Ay —
0 1 ot 1 Ag at2 (27a)
. p 92 . )
R - R Ry (27b)
or®

where )\2 = 0 for Model 1 and Ay = O for Medel 2.

When o, and ¢, are harmonic with an angular trequency w, then the complex Young’s modulus
E is given as,

E=ﬂ=M1+1:M2 o
L L, +iL,
where
Ly = -poay + ppoday - olpyBy + pefy + ABy +
+ AgBg) + @By + AgBy) + Ay(By - Bpw®Vw (29a)
Ly = ~pgo’ay — play + Bouy + MBy + ABy -
- 0By + peBy + Ay + AgB)) (29b)
M, = ~wBAp, + 262 + Bhgug) + w¥(Bhguy + 2u) | 29c)
My = 3hgp; - wfBApy + BAgpy + dpypy). (294)

Knowing the values of p,, p,, 3, and B,, we determine two groups of four unknown constants,

(Ags Ay, aj, a2) and (A, /\2, a,, a2) from the observed complex modulus and the observed loss factor
at any two distinct frequencies by a method similar to that used for the torsional mode. Finally we
select one of the groups, which minimizes the error V,, defined as:

(1) (1))2 (2) (212
CUED - EDR @D - B

| - (30)

14

(ED2 , E@)?)

where E(1), Eg’ are defined as in torsional vibration. The phase velocity V), and the group velocity
Vlg are given as for the torsional mode:

* o
Vi = [ sec (_‘) (31)
P 2
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El
vV, = P 31b
lg 5 o E 8 5 (#10)
‘ €08 — - — —— C0S — - — 0, 8in —
2 2 g» 1o
where
E* - |E|
E
'o‘l = tan~! 2
E,
JoE*
E* =
@ dw
09,
61 = cvmmema
@ dw
ls‘l = Re(E)
E2 = Im(E)n

Results and discussion. The actual computation of four parameters, either ()\0, Al, a,, a2) or
(A 1 )\2, as, a2), was made in the same way as in the torsional mode. We used the observed modulus
and the loss factors at 1.00 kHz and 2.00 kHz. It turns out that Model 1 always gives a better
approximation than Model 2 for all ice-saturated frozen soils examined., The results of the com uta-
tion are shown in Table III. The degree of approximation is not satisfactory. The values of V
vary in the range of 10°* ~ 107, which is much larger than V . It might be possible to obtain a
better or well balanced approximation for both torsional and longltudmal modes by selecting eight
parameters in a different manner. Also one could improve accuracy by introducing more parameters.

The most commonly used linear viscoelastic models for earth media have been the Maxwell
or Voigt models with only two parameters and very little attention has been directed toward
examination of the complete constitutive equation. Although the dynamic behavior of frozen soils
is less complex than that of unfrozen soils, the degree of deviation from perfect elasticity is
surprisingly large. It is felt that further efforts should be made to investigate the constitutive
equation of frozen earth materials according to the theory of continua.
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r.

Table III. Values of constants for longitudinal mode.
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IlI. THE USE OF FREE OSCILLATIONS TO MEASURE THE ELASTIC
PROPERTIES OF MATERIALS

by

M. Smith, R, Martin, and Y. Nakano

Introduction

This section discusses our efforts to develop, and apply, experimental techniques for the
measurement of the elastic and slightly anelastic properties of materials based on the free
resonances of layered elastic spheres. We initially undertook this effort because such spheres are
the only bounded bodies, known to us, for which we could develop exact analytic solutions, Con-
sequently we are not, a priori, restricted to considering only high or low frequency approximations
or time-limited response.

Although some classic studies of the dynamic properties of elastic spheres have long been
available (see Love, 1944), the results were generally devoid of practical significance until the
Earth’s free oscillations were observed after the Chilean earthquake of 1960 (Bullen, 1963). The
consequent attention by seismologists resulted in a well-developed literature from which many of
our references are drawn. We differ slightly in that we restrict our attention to spheres com-
posad of discrete layers and we also neglect the effects of self-gravitation, rotation, an initial
stress state, and ellipticity (see Dahlen, 1968).

The following three sections and the appendices are thenretical, with some numerical examples.
So far as we are aware, the particular development given here, that is, a layered non-gravitating
sphere, has not been published, of a piece, elsewhere. It is, however, a *‘standard,’’ albeit
complicated, problem. We believed that its detailed solution had to be explicitly laid down before
progressing into experiment.

The last sections deal with the results of pilot experimentation. We believe the results indi-
cate that the practical difficulties associated with this method are being mastered and that the
technique is a viable one,

Elastic Displacement Solutions in Spherical Coordinates

We consider a volume of space filled with an isotropic, homogeneous, lineatly elastic medium
having Lamé constants A and p, and density p. We assume the medium to be free of gravitation and
other body forces, but allow the existence of one of motre surfaces across which tractions may be
applied.

Let ube the displacement field specifying the motion of each particle from its unique rest
position. We assume u to be a first order infinitesimal and do not, therefore, have to distinguish

PRECEDING PAGE BLANK
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between Eulerian and Lagrangian coordinate systems. Let T be the elastic siress tensor. If we
assume that w = 0 corresponds with the unstressed state of the medium, T is given by (Fung, 1965)

T = MV-wl + ptvu + ue), (1)

where [ is the identity tensor. Wuis the gradient tensor of u, and u¥y is its transpose,

The conservation of linear momentum leads immediately to the equation of motion,
pdiu = v . T, ()
Equation 1 and some standard vector calculus identities convert eq 2 to
pa?u =+ 2p)V(Vew - pUx V x u, 6))
We choose to represent u by
u=TU + V|V -T x VW @
where U, V, and W are scalar fields and Vv, is defined by
v, = 09y + Plsin 6713, ' (5)

T is a unit vector directed away from the origin, ¢ and ¢ are the colalitude and longitude, and T and
¢ are their respective unit vectors. V, is the gradient operator on the surface of a sphere of unit
radius, It is related to the three-dimensional gradient by

v=T9, - rlv,. ' (6)
After some algebra, we can show (Backus, 1967) that

Al | v ) =T¢9r {(8, + rg)U + r'lva} +

+ V1 (r‘ar + -2— U + r"2v% . ()]
1‘2

and
VXVXxu ='r’¥r‘2r7r(rv¥V) = r‘2v%Ul + v tr-la,u = r“laf.(rV)l +

+ T x v, ir‘2vfw + r"laf Wi, ®

We insert eq 4, 7 and 8 into eq 3. We now appeal to the uniqueness of the representation 4 (Backus,
1967) to yield the three coupled purtial differential equations
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pPoU = (A + 2u)9, {(ar + ?) U« rlva} -

t

[}

- % !ar(rva) - V?Ul ' (9a)
r .

]

PRV = (A + 2p) {(r-la, + %)v + r‘"va} -
r

- Bau - vy, (90)
r

and

POV = L1700 + i (9c)

We note that both V and ¥ may be augmented by any constant without affecting u (see eq 4). There-
fore, we may expect these two scalar fields to be determined only to within an additive constant,
We also note that eq 9a and 9b both involve U and V but not W, while eq 9¢ involves W but neither
of Uand V.

The manner in which one elects to solve eq 9a, 9b and 9¢ (plus whatever boundary conditions
appertain) depends upon the intended application of the solution. For our purposes, we wish to find
a set of complete, linearly independent vector fields {f!, f2, ...} each of which satisfies eq 3. If the
set is complete, all possible solutions to eq 3 may then be expressed as some linear combination of
the members of the set, the coefficients nsed in the expansion being determined by boundary and
initial conditions. .

In pursuit of this, we Fourier transform eq 9a-9¢, going from time ¢t to angular frequency ., We
do not introduce a distinct symbol for Fourier transforms since it will be clear from the context
whether a symbol refers to the transformed or untransformed variable, The result of Fourier trans-
formation is to replace af by —w°,

To transform the resultant trio of equations from partial to ordinary differential equations we
introduce a surface spherical harmonic expansion of U, V and W. Forl > Oand -l < m < I, we
define (Hill, 1953)

m (1) 21 + 1 (0 -~ lml)!l'/é m im¢
Yl 6, ¢) = (-1) rral R T P (cos O e (10)

where P{" is the Associated Legendre Function given by

a - xg)(lm |72)

PU(x) = = riml x® - 1y, (1)

2l

If S1 is the surface of a sphere o” unit radius ceatered on the origin, the Y{" are orthonormal in the
sense

Sfl YT (0, ¢) YR (6, ¢) sin 6d6d = 5))5,,, (1?)

where the bar indicates complex conjugation : .d Sij is the ¥ronecker delta.
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The Y (6, ¢) form a complete set and, if we assume U, V and W are sufficiently regular, we
may expand them as '

o0 1

U(’. 0, ¢. OJ) = 2 z Ui" (ro O.)) y;" (03 ¢)n . (133')
1=0 m==l
oc ] .

Vi, 6,¢,0) =2 2 V{" r, v Y{" 6, ¢), (13b)
1=1 m==]

and

W6 d0) =3 £ WG YO, ¢. (13¢)

1=1 m=-]

The ! = 0 terms have been omitted from eq 13b and 13c since inspection of eq 4 reveals that these
terms do not contribute to the displacement field,

We now insert eq 13a-13c into the transformed equations 9a-9¢, and make use of the relation
vIYP - -10 + DYP, (14)

The resultant expressions are then multiplied by a particular Y;" and integrated over the surface of
a sphere of radius r. Application of eq 12 leads immediately to

- pw2U{" = A + 2;4)8' {(a' + %)U;" = &.:_HV;"} +

+ Eya v noavm -+ pupl (15a)
r

K 1)
- P(‘)zvin = (A + 2'1) {(fa' + E)U;" - _(..—*.——V;n} -
r2 r2

- Ejgum - 2avmy, ' (15b)
r
and
- pZWT - ri (WP - M w;"}. (15¢)
We note that none of eq 15a-15¢ explicitly involves m.

The set 15a-15¢c can be solved by any of several standard techniques, The method used here
is detailed in Appendix A, The results are
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U, 3,1, ke) M}l(yr) 3, y, kr) L('_i_”yl(yr) A,
= . B, forI > 0;
V] s r- a,[r]l(yr)] r al‘ [rjl (}’r)] D
: |
(16)
AO
Ug = 1d,jgkn) 9.y, (kn)} C (17a)
0
and
Vo = 0; (17b)
. E,
W, = lrjGyn) ey (ynl F, for ! > 0; (18a)
Wy = 0; (18b)
where
k = . L __ .o (19)
\ P
and
@ @
y = e (20)
VB

Vp and V are, respectively, the compressional and shear velocities of the medium. Each of 4,
B, . F represents a spherical hamonic of degree 1, That is, each one is some linear combina-
tion of the 2] + 1 functions {Yy ..., Yl 5 oc Y | but we cannot specify, without considering a

particular problem, what linear combination each 1s. To be specific, we may express them as

1
46,9 = 2 ATYRG. 9, (20a)

M=)

are not constants but the A" ... are. Equations

and similarly for B, Cl, D, E, and F,. The A'l cee
= 0, there are only two

16-18 thus contain 6(2] + 1) presently undetermined constants. (When /
constants.)

We believe that the manner ir which we have dealt with the spherical harmonics merits fusther
use eq 15 as an example, We could retain the superscript m and have

WP = {EPrj (yr) + Fley, (ynb YT (6, ¢). (1)
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Let us then define

Combining these, we have
1 1
W, = rj{yr) mil Ef’ Y'l" 6, ¢) + ry, (yn) mzl F{"Y'l" 6, ¢)

where we were able to regroup the sums because each of the two independent solutions to eq 15¢,
namely rj, (yr) and ry, (yr), is independent of m. This last expression is simply eq 18a.

Any linear combination of spherical harmonics of the form

Hy- & anym, ) (22)

m=-]
is itself a spherical harmonic and satisfies

vikH, = - 10 + DH, (23)

The set {Y]', ..., Y2, ..., Y]l serves only as an orthonormal basis for the 2! + 1 dimensional
space of spherical harmonics satisfying eq 22, and has no inher=nt significance, At this point in
our development we can only know, then, that each set of radial functions in eq 16-18 will be
multiplied by some spherical harmonic, H,. We cannot know H,’s precise form; the a'l" in eq 22 will
be determined by boundary and initial conditions. .

Fres Oscillations of a Layered Elastic Sphere

We consider a sphere divided into N concentric spherical shells. We number the shells from
the center outwards and let r, be the outermost radlus of the it! shell, Then ry is the radius of the
sphere. Let rj equal zero. We suppose that the i* h shel is composed of an elastic, homogeneous,
isotropic medium of density p; and having Lamé parameters A; and pj. These parameters define the
compressional velocity Vpi and the shear velocity V

We assume that the svrface r = Iy is free from all tractions, and that no body forces (such as
gravitation) are present. We wish to know for what angular fréquencies « there exists a non-trivial
displacement w(r) e'®!, such that the surface is free of traction and all internal boundary conditions
(discussed below) are fulfilled. We shall 1abel such angular frequencies eigenfrequencies and their
associated displacements eigenfunctions. We refer to such traction-free motions as free oscillations,

Let u'i)(r) e!® be the displacement field in the layer. From the displacement, we can compute
a stress tensor, T' (), by eq 1. Equation 2, namely,

pdfu = V. T ®

must hold everywhere in the medium, since it expresses only the conservation of momentum and is
not dependent upon such assumptions as isotropy, homogeneity, etc. In particular, eq 2 is valid
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in a small “‘Gauss:an pillbox’* which encompasses a portion of the surface r = r;, the boundary
between the i*? and i+ 1)"‘ shells. Let v denote the volume enclosed between the radii r - or
and r; + Or and by some range of the coordinates 6 and ¢. Then

fpdfudv = [ w. Tdv. (29)
1 4 1 4

If 3 is the surface of v, Gauss's theorem leads to

fpafudv = [T .ndo
v 2

where n is the unit outward normal on 3. If we let or go to zero, then the volume of v also vanishes
and, if p af u remains bounded, the left-hand integral goes to zero. The right-hand side becomes

JLodsD _ pU-Dy  Fo = 0 arr = 1. (25)
2

Since this result is independent of the details of the shape of X we conclude that the quantity T - 1~
must be everywhere continuous, and in particular across boundaries.

To condition 25 we add one expressing our intuition of the behavior of elastic materials, If
both the i*" and ¢ + 1)*® shells are solid, we require that the displacement u be continuous, We
refer to interfaces at which this is true as being ‘‘welded.’”’ If, however, one or both shells are
fluid (that is, p = 0), we require only the radial component of displacement to be continuous. In the
latter case, we allow the boundary to slip but in neither case do we allow holes to open or matter to
interpenetrate itself.

The quantity T - T'is a vector and represents the traction (force) acting on a surface normal to
T. In a fashion identical to eq 4, we may represent it as

T .-T=TP + ©,Q -Tx VR, (26)

where P, Q and R are scalar fields. Equation 25 states that P, @ and R are continuous across an
interface. The stress-displacement relations, eq 1, enable us to relate P, Q@ and Rto U, V and W,
the scalar representatives for u. These relations, which are derived in Appendix B, are

P=Q0+20U + 2y, ﬁviv, (27a)
r r
Q = ”{E + ral‘ (Z)}. (27b)
r r
and
R - ,ua,(!). @10)
r

The import of the boundary conditions, then, is that P, @, R and U are continuous everywhere
and V and W are continuous in solid domains.
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We now have six scalar fields to contend with, However, an examination of eq 16, 17, 18 and
27 indicates that we can group them into two sets, one consisting of U, V, P and @, and one
consisting of W and R. These two sets are completely independent; they do not interact in any
way. And we may, without loss of generality, treat them separately.

The set (U, V, P, Q) is the set of spheroidal variables. The displacements described by this
set give rise to both cou:pressional and shear strain, and are interference products of compressional
and vertically pelarized shear waves, Among other things, this set gives rise to the spherical type
of Rayleigh surface waves.

The set (W, R) is the set of toroidal variables. The displacements described by this set are
orthogonal to r and produce only shear strains. They are the interference products of horizontally
polarized shear waves. Love surface waves are associated with this set.

From this point forward we will discuss only spheroidal types of motion. A similar development
for toroidal oscillations can be easily formulated since the toroidal problem is, in fact, substantially
simpler,

For any specified angular frequency of oscillation w, the set (U, V, P, ) can be expanded in
terms of spherical harmonics as

ve oo - I 5 eoYIe (132
= m=-—

Ve o 40 - 5 ﬁl VR, @) YR 6, ¢) (13b)
= m=-

PE6 ¢ w - ¥ ﬁl PP (1, w) YR (6, ) (283)

a = m=-—, o

o 1

R A (RO (280)
= m=-—

The U'{" and V{" are given, in terms of a set of coefficients, by the analytic solutions 16 and 17,
P{" and Q" are then given by eq 27. Our problem is to determine those frequencies, w, for which
we can construct U, V, P and @ by this method, for each layer, such that all boundary and interface
conditions are met.

However, because the Y{" are an orthogonal set, we may consider the above problem separately
for each Y, That is, given

U(r' 6! ¢v (D) = Ui" (f, w) YT (6l ¢)v (29)

etc,, for what angular fregnencies « can we satisfy all internal and external boundary conditions?
Since m, as discussed earlier, is a degenerate index, we can simplify eq 29 to

U@ 6, ¢, 0) = UG o) H, (6, §), (30a)

Vi, 6, ¢, ) = V|, ) H 6, ¢), (30b)
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]

P(r, 6, 6, 0) = Py(t, o) H, (6, $), (300)

and

Q(r, 6, ¢, w)

Q,(t, w)H, (6, 9, (304)

where H, is given by eq 22 and is some spherical harmonic of degree I. The details of H, are of
no particular interest since the eigenfrequencies and the form of U ORERT @, remain fixed no matter
what H, we choose.

Our problem now is to find the eigenfrequencies associated with spherical harmonics of degree
1. If we wish to know all eigenfrequencies, we must repeat this procedure for eachof I = 0, 1,
2, ...

We will devise a constructive algorithm which will enable us, for a given angular frequency o,
to constiruct a solution from the center outwars which mmeets all boundary conditions save one, If
the last condition is met, » i8 then an eigenfrequency.

We consider eq 16, which expressed U , and Vl as a linear combination of four independent
functions of radius. The coefficients 4,, ..., D, were taken to incorporate all spherical harmonic
content. Equation 27 allows us to extend eq 16 to

) (4]
7y j 1
<Vih-m LB @y
P} (o}
Qi Di
W L

where i = 1, ..., N designates the layer to which the solution is appropriate, _f_l{ isa4 x 4 matrix
constructed from

2A 1+ 1)
and
hg = wlrthyg + 18 (7 hg)L (320)

and the first two rows of H_l‘ are taken from eq 16. The set {4f, ... D{l serve as constants, and not
spherical harmonics. For the remainder of this development, we shall omit the 6 and ¢ terms for
convenience,

We rewrite eq 31 as
8(r) = Hi(p . € (33)

where we have omitted the subscript I, The vector st (r) includes both the stress and dispiacement
terms.

We will now proceed to construct a solution satisfying all internal boundary conditions. In

-region 1 which includes the point r = 0 we can a priori eliminate those solutions which go as

¥y, (kr) and y,(yr). Therefore, C! has the form
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Al
= Yo = e, + B'g, (34)
0

whereTa"1 and 3’2 are four-dimensional unit coordinate vectors directed along the first and second
coordinate axes. In the first region, then, we have :

sl(n - H'(n - 14'e] + BlE,). ¢
In the second region, we have

82 = H%(» - C2, (36)
Assuming botk regions to be solid, the boundary conditions require that

8%(r) = 8@y, N (37)
or

He@) - CF = Hi(rp - 14'%) + BIE,L. (38)

Because the solution composing the columns of H is linearly independent, matrix theory guarantees
that H is nonsingular. Therefore, we may express Cc?as

C? = W2apI! - Hlep - 1A'E] + BlE,. (39)

An alternative form for eq 39 is

c2 - Al¢? 4 B2 (40)
where

E% - (BRIt - HiG) - & | (1)

¢ - WRepl! - H¢) - & (42)

Equations 40, 41 and 42 suffice to specify §° (r). By a similar procedure, we can extend the
solution from the i*? to the (i + 1)”’ shell, The appropriate relations are

s+l = B . cit! (43)
ci+l . Al§i+l a Bl{H—l (44)
EHI - [ili-&l(r)]-—l . L’i ) - fi (45)

€i+l _ [Ll”l(r)] . ﬂi(') . é’i. (46)
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In fact, either of £€!*! or ¢{*! can be computed alone by starting with eq 41 or 42 and simply
applying eq 45 or 46 as many times as is necessary.

We suppose now that we have computed f” and {N where N is the number of shells. The
solution in this shell is given by

() = HV(r) .- 1A1¢N 4 BI¢NY, (47)

We note that both the solution associated with &Y [i.e., 8! (r) when B! = 0] and the solution
associated with ¢ N separately satisfy all of the internal boundary conditions. If w is an eigen-
frequency, we will be able to find some Al and B!, not both zero, such that the last two
components of sV (ry) are zero.

A straightforward way to do this is to evaluate
(a )SN - ﬂN (’N) . g.N. (48a)

and

®)gV - gy - ¢V (48b)
If Sg (rN). i.e. P, must vanish, Al and B! must satisfy

Altesy) - - (s, (49)
We may, without loss of generality, impose a normalizatioq such as

@h? + BYHY -1, _ (50)

which, with eq 49, allows us to compute Al and B, Using Al and B!, we then compute Sﬁ’ (rN). i.e.
Q, and examine it to see if it vanishes, If it does, w is an eigenfrequency; if it does not, » is not
an eigenfrequency.

If w is an eigenfrequency then we may use the values of Al and _B1 in eq 43 and 44 to compute
the eigenfunction S!(r) at any radius in the system. We recall that §'(r) must be multiplied by some
spherical harmonic of degree I and the factor @t to obtain the full solution,

sitr, 0, 4, t) = SI(r) H, (6, ¢) e

where we have reinstated the subscript . We emphasize again that the precise nature of H, depends
upon initial conditions and is not relevant here,

This method requires modification when eithet I = 0 or I # 0 but one or more shells have a
vanishing shear modulus. We will briefly outline the form these modifications take,

Whenl = 0, B! vanishes identically and only the solution is propagated. The matrix ﬂ{ is
collapsed to a2 < 2 matrix by eliminating those solutions with arguments, yr. V and @ both vanish
and the only condition at r = ry is that P vanish. A! becomes merely a scale factor and may be
taken as equal to unity.

In a fluid region, @ vanishes identically. Across a solid/fluid or fluid/fluid interface V may be
discontinuous and @ is continuous and zero. If we are propagating upward through a solid and
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Figure 11. Loci, in the (f, 1) plane, of the frequencies of free oscilla-

tion of a sphere of radius 10.16 cm composed of material having a density

of 2.202 g/cm’, a compressional velocity of 5.968 x 10° cm/sec, and a

shear velocity of 3.764 x 10° cm/sec. Solid lines connect modes of the

same overtone number. Dotted line indicates the asymptotic slope (dw/

dl) associated with Rayleigh wave propagation in an infinite half-space
having the same material properties as the sphere.

encounter a fluid, we must combine the £ and ¢ solutions to yield @ = 0 at the interface. This re-
quirement determines Al and B! and, therefore, C! for all shells up to, and including. the fluid
region.

Consequently, in a fluid region we have only one solution. In crossing from a fluid to a solid
region, we must ‘‘start’’ a new solution having some non-zero V, but t’or which U, P and @ vanish.
We may always find some { which yields this result,

For a given 1, we shall arrange the frequencies of free oscillation in ascending order, as 0@y
1@ 9@y - e We shall designate the displacements, as a function of ry as gu, ;u, ... and the
four-vector of displacement and stress by 8,, 8;, ..., etc. The “lowest’ mode, for a given I, is
referred to as the '"fundamental’’ mode and the remainder as ‘’'overtones,”’

Figure 11 shows the loci, in the (w, 1) plane, of all spheroidal eigenfrequencies lying below
100 kHz for a homogeneous sphere with 10,16 cm radius. The sphere has a density of 2.202 2/cm’,
a compressional velocity of 5.968 x 10° cm/sec, and a shear velocity of 3.764 x 10° em/sec.
The results show several features common to such ~alculations.

The lowest fundamental mode is yw,. This, almost always, is the case. Secondly, the modes
for I > 2 tend to arrange themselves in smoothly varying suites, each of a given overtone, or radial,
number. These are kncwn to correspond to the fundamental and higher-mode Rayleigh surface waves.
To establish the connection, we observe that ¥/ 1(6, ¢) has the value

I oy A1 oo g
Y16, 4) = (-1 472D "y e (61)

as can be seen from eq 10 and 11. Y{ describes motion which is closely coufined to the equator

(¢ = n/2) and which behaves as waves traveling circumferentially about the equatorial zone. The
change of phase, per unit of distance traveled in the ¢ direction, is 17a and is therefore the mode’s
surface wave number. For large values of w, we may, roughly, expect that the quantity
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vl - g% (52)

al

represents a group velocity and
c* . 28 (53)

represents a phase velocity. In Figure 11 we have placed a dashed line whose slope is given by
eq 52 when U* is equa: to the group velocity of Rayleigh waves propagating along a half-space, the
properties of which are the same as the sphere’s. We regard the agreement as good.

The numerical techniques used in this, and subsequent, calculations are discussed in
Appendix C,

The Inverse Problem

In the preceding two sections we have developed the ‘‘forward’’ problem for a layered elastic
sphere. The forward problem consists of the generation of the eigenvalue spectrum associated
with a given model. In this section we consider the inverse problem of utilizing a measured
eigenvalue spectrum (which will, inevitably, be incomplete) to infer the properties of the materials
of which the sphere is composed.

Let M be the space of all layered elastic sphares having N layers delimited by the points
lro, Fpo oo Iy } where, as before, rg = 0 and Iy is the sphere’s radius. Then all models in M have
a common reometry but differ in the elastic properties (including density) ot their component shells.
M, then, is o space of dimension 3N (since each shell has three distinct properties) and we may
represent a g'ven model by m, a vector of dimension 3N. We further limit M by requiring that it
encompass on.y physically realizable models. A model is said to be physically realizable if each
shell’s properties satisfy

o> 0, (543)
i > 0, (54b)
and
A > _% i, (54c)

where both equalities 54b aud 54c are not simultaneously true. The latter two constraints merely
express the condition that an elastic material be thermodynamically stable (Fung, 1965).

Let o (m) be the n*? overtone of the spheroidal mode of degree | associated with the model m.
(Both n and I range over the non-negative integers.) We cannot express o, (m) :in closed analytic
for1 but we can, through techniques previously discussed, generate it numerically. We can now
formulate the inverse problem in the following manner.

Let nw?i' i =1, ..., Kbe observed resonant frequencies associated with particular modes of
oscillatics. We wish to determine a model m, satisfying

ni®@); (M) = m“’?i I=1..K (53)
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As Backus and Gilbert (1967) have pointed out, we do not know, a priori, if the set of solutions
to eq 55 is empty, has a single member, or is a subspace of M of one or more dimensions,

We do not know a direct procedure for solving eq 55 for one or more models m, We resort here
to iterative methods for, hopefully, geuerating successively improved approximations for m, For
convenience we rewrite eq 55 as

D,(m) - D? i=1..,K (56)

1

where the D? are data and the D, (m) are data functions. D;(m) is a scalar-valued function whose
domain is the 3N-dimensional vector space M and whose value is the angular frequency of free
oscillation of the ni”' overtone of degree ;. Let m; be some model which we believe to lie near m,
We wish to find some perturbation, 8m, in m’, such that m’ + Sm more nearly satisfies eq 56.

(n° and m® + Sm must both lie in M but 5m alone need not.) We wish to have

0 0 :
D,(m” + Sm) - D; i =1, ...K. (57)

Expanding Di(m) in a Taylor series gives
3N aD,
D’ + dm) = D;@® + Y f—] omi+ 0  i-1,... K (58)
et 6mj m° i
J’:

Then, to first order in |5m|, we wish dm to satisfy

3N "aDi
Z l_ sm, = DO — D.(m% i=1,...K (59)
om ) o ! l .
i=1 i‘m
If {dm| is sufficiently small we may expect that m! - m° + Sm will more nearly satisfy eq 56

than m° did. As a measure of a model’s suitability , we may define

0
K, D,(m) - DO|

e(m) - Z . (60)

: 0
i=1 Di

Equations 59 constitute a K x 3N set of linear equations in the compohents of ém, We may
not, in general, expect to find ém exactly satisfying eq 59 for all possible cases. If the rank of the
ystem does not exceed 3N, such a dm exists but is not necessarily unique. If the runk exceeds
3N, it does not exist.

Various methods of solution have been applied to the system 59 (Backus and Gilbert, 1967;
Anderson and Smith, 1968; Smith and Franklin, 1969; Jordan and Franklin, manuscript, 1971). We
adopt here a general technique proposed by Franklin, (unpublished manuscript, 1969.)

We rewrite eq 59 more compactly as
Am® - ém - R(m®) (61)

where A(mo) is the matrix whose elements aij are
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D
a; (m) = |— (62)
. am; )

and R(mo) is the vector of data residnals whose i" component is D? - Di (m%), We now regard
eq 61 as a linear relation between three stochastic processes: a signal process, a data process
and a noise process, om is a sample of the signal process, and R(mo) is the sum of a sample of
the data process plus a sample of the noise process. Each process is taken to have zero
expectation.

The use of stochastic techniques to solve eq 61 is based, in part, upon contemplation of some
of the potential sources of error entering into the relation. The measured spectral values D? are
contaminated by measurement error and possible mode misidentification. The physical system upon
which measurements are made may deviate from the class of models M in which m must lie. It is
possible that there is no model m in M that would then satisfy eq 56.

Let R™ denote the autocorrelation associated with the signal process 5m , and 50 denote the
autocorrelation operator associated with the noise process., R™ is a 3N x 3N square matrix whose
3, HH component is the expectation of the product Smi‘a‘mj. _ED is defined analogously. The best
linear estimate for 8m is :iven by (Franklin, 1969):

sm =R® . A(m®) . [Am® . B . AT@" + ROI! . R(m?). (63)

A solution, 6m, can be guaranteed to exist if _I_?o is a positive definite matrix,

Pending the acquisition of experience, we will forego at this time any suggestions about the
fabrication of R™ and RO,

We have outlined above a method for inverting measured eigenvalue spectra to produce a model
m consistent with the spectra. The only remaining theoretical problem is the computation of the
partial derivatives, :

=]
amj m?

which form the components of 4 (mo). These expressions are, typically, extracted by applying
Rayleigh's principle. Particularly good discussions are available in Backus and Gilbert (1967)
and Dahlen (1968). We give here only the results. If A, z and p in a particular layer are altered by
small amnunts, the resulting alteration in w is given by

r

N
{f GAA + duk  SpR)r2dr}
B el (64)
N
2w [ U2 + 10 + 1)V2]predr}
0

where

A= @U + rrRR (65a)
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M= 20,002 + I+ DrRW + (9, - DV +
+rr2F% L R0 - 1)1 + DU+ 2)U3, (65b)
R - -w2WU2 + 1U + 1)V3, (65¢)
and
F -2u - 10+ V. (65d)

Preliminary Experimental Results

As a first step in the validation of the foregoing theoretical results we elected to attempt to
measure the normal moce spectra of layered spheres of known composition. Spherical samples are,
in general, difficult to prepare, aud our first specimen was composed of a thin steel shell filled
with distilled water.

The steel shell was formed by joining two stainless steel hemispheres with epoxy. The
sphericity and homogeneity of the resulting shell is open to question; the hemispheres were pro-
cured from an industrial float works. However, we believed that mechanical perfection was not, at
this point, necessary.

A small transducer was bonded to the shell and the sample was placed in the experimental
arrangement shown in Figure 12. Coupling between the sample and the ‘‘driving’’ transducer was
weakened by inserting rubber padding and an ‘‘O’’ ring between the two, ' Some experimentation
indicated that coupling in this configuration is sufficiently weak that the measured spectra are not
significantly influenced.

The apparatus produced a graphical record of the response of the sample to a sinusoidal source
as a function of frequency. A portion of that result is recorded in Figure 13. The center frequency
of signuficant peaks is given above each such peak. The amplitude scale is arbitrary, but lincar,
Tentative assignments of peaks to a particular mode are indicated by the designation nSl, vhere n
is the overtone number and ! is the harmonic degree.

Figure 14 is a juxtaposition of the observed resonance frequencies and the values computed
for a sphere comp:osed of an inner core of density 0,998, having a compressional velocity of
1.438 x 10° and a radius of 7.62. The core is sutrounded by a shell of thickness 0,0904, with a
density of 7.3772 and having compressional and shear velocities of, respectively, 5.79 x 10° and
3.1 . 10°, We regard the agreement as being generally satisfactory.

In Figure 13, it can be seen that we have, in several instances, assigned a mode to a small
vollection of adjacent peaks, Perturbation theory (Dahlen, 1968) tells us tkat small deviations from
spherical symmetry will generally split the 21 + 1 individual modes associated with a given (n, I)
pair apart in frequency, That is, asphericities either remove, or at least decrease, the degeneracy
of a particular mode. (Only the family S, is not degenerate, and it, too, can still be shifted.) Itis
not ur:easonable to expect that the abundant asphericities present in our sample will produce such
an effect and that, for instance, the twin peaks associated with 082 in Figure 13 are an expression
of this, We believe that such effects can be greatly reduced by increasing the mechanical symmetry
of the sample.

The sample fabrication method used above is not a particularly happy one for routine measure-
ments of the properties of fluids, Figure 15 shows the partial derivative of eigenfrequency with
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Figure 12, Experimental apparatus used to measure frequencies of free oscillation,

T T | T T T T o6 T
6859
053 0Sa
4494 5089
. 052
°a
c 3452
3 — 87 —
> 35 o35 ‘
g 5554 ) ¢So
) 6060 ,S; 7210
£ B 5974 .
° 63016314
5 U 6422
a I
E
q o
1 | — 500 Hz |=— | i | i
f {(kHz)

Figure 13. Portion of the measured spectrum of a stainless steel shell 0.040 in. thick and
6 in. O.D., filled with distilled water. Peak frequencies are shown and tentative mode assign-
ments, based on handbook data, are indicated.
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respect to compressional velocity in the fluid and the shell, and shear velocity in the shell, as a
function of 1, for the fundamental modes oS,. We see that for I > 2 shear velocity in the shell
dominates all other controlling parameters, and that for I > 5 compressmnal velocity in the fluid
is the least significant parameter. Atl = 13, compressional velocity in the fluid is about 1/40
as important as shear velocity in the shell.

A preferable arrangement is one in which the quantity of interest is the controlling parameter.
One way to achieve this is to utilize higher-order overtones. For example, for 1S5 we have

90426 (fluid core),
F7

D
O 165 « 108 (shell), and
F 7

p
I 339 « 100 (shelD.
st

Thus ,S, is substantiallv more influenced by the properties of the fluid than by those of the shell,
This behavwr results, in a general way, from the increasing concentration of energy in the interior
associated with higher and higher overtones. Unfortunately one result of this is that such modes
are difficult to excite, or observe, from the surface.
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free oscillation, as a function of 1 and with respect to various indi-

cated properties, of a water-filled steel shell. For visual ease, the
derivatives have been joined by smooth curves.

A more promising approach is to use shells composed of a material, such as Lucite, whose
properties do not represent as severe an impedance contrast to the interior material. Exploratory
calculations are presently being made on the optimum shell composition. We are also arranging to
have shells machined, as opposed to other methods of fabrication, fo greatly reduce the variations
and asphericities of the sample,

The preparation of spherical soil samples proved to be considerably more difficult, owing to the
volume change of water upon freezing. After extensive experimentation we were finally able to form
a frozen soil inside a spherical steel shell by maintaining strong temperature gradients across the
sample while allowing for the venting of unfrozen water from the sphere.

Figure 16 shows a portion of the resonance spectrum for a 4-in.-diameter sphere of frozen, fully
saturated 20/30 Ottawa banding sand. The experimental arrangement used in this measurement
differed from that depicted in Figure 12 in that a) the sphere was supported on inflated plastic
cushions and b) the applied signal consisted of a four cycle tone burst generated every 10 milli-
seconds.

The modes 082 and 0SO. together with their partial derivatives, were used to estimate the
compressional and shear velocities of the frozen soil. Forward calculations for the new model are
shown in Table IV and compared to the data. The maximum relative error for the lowest five ob-
served modes is 3,7% for oS3 Which Figure 18 shows as being badly split
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Figure 16. Portion of the measured spectrum of a stainless steel shell, 0.040 in. thick
and 4 in. 0.D, filled with frozen, saturated, 20/30 Ottawa banding sand at —38°C,

Table IV. Computed and observed frequencies of free oscillation of a saturated,
frozen 20/30 Ottawa banding sand sample encased in a steel shell.

Mode Computed® Observed Comp-0bs
(kHz) {kHz) Comp
oS, 21.01 21.01 0
oS, 27.72 28.11 -1.4 x 10*
oS, 30.96 31.96 -3.2x 107
08, 33.42 33.44 -6 x 107
oS, 39.38 39.88 -1.8x 10°°
0Ss 47.14 22

1. Computed for r, = 4.961 cm, Vpl = 4.391 x 10° em/sec,

Vsl =2.66 x 105 cm/sec, Py =20, Tg= 5.062 cm, sz =
0

5.79 x 10° cm/sec, Vo= 8.1 x 10® em/sec, po = 7.8772.

2. Splitting for oS, is too severe to allow a useful result.
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Conclusions and Projected Research

We believe that this procedure will provide a theoretically straightforward and experimentally
practical method of measuring the elastic properties of solids and fluids, and in particular, of
frozen ground. We further expect, with the existing apparatus, to be able to measure @, or attenua-
tion, simultaneously with the elastic properties. (The necessary theory for attenuation measure-
ments is well-developed. See Anderson and Archambeau (1964).)

The technique should be particularly useful in discerning small variations of elastic properties
as a function of temperature, Such information is of value in deciphering the physical chemistry
of frozen soils through, and near, the freezing point.
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IV. DETERMINATION OF ACGUSTIC PROPERTIES OF FROZEN EAKRTH MATERIALS
BY THE USE GF A CRITICAL ANGLE TANK

by

Y. Nakano, M. Smith and R, Martin

Introducticn
One of the standard methods for determining acoustic properties of earth materials is an
ultrasonic technique using a critical angle tank., In spite of its inherent interpretive problems, it
theoretically allows simultaneous operation in toth dilatation and shear at wavelengths small com-
pared to the sample thickness,

The method, applied to metal, was first described by Schneider and Burton (1949) and sub-
sequently used by Subbarao and Rao (1957) on rocks. King and Fatt (1962) used it to determine
velocities in rock specimens subjoct2d to confining pressures, and Wyllie et al, (1962), Gregory
(1963), and Banthia et al. (1965) applied the techniques to determine velocities in rocks under both
differential external confining pressures and internal pore fluid pressures. Recontly Attewell (1970)
used this method to study triaxial anisotropy of rocks., '

In the present work dilatational and shear wave velocities, as well as attenuation of several
standard frozen soils, were determined by the use of the critical angle tank,

Experimeztal Apparatus

The critical angle tank is constructed from % ircin-thick Plexiglas, 13 inches long x 9 irches
wide x 9 inches deep (Fig. 17). At either ond, a transducer mounted on an aluminum rod is inserted
through the wall of the tank by means of an O-ring seal. The distance between the two transducers
can be changed. One transducer, made of 2.5-inch-diameter < 0.5-inch-thick PZT4, serves as a
transmitter for producing uniform plane dilatational waves. The transmitter is connected to a Wayne
Kerr Model SR-268 signal generator via a General Radio Model 1396-B tone-burst generator so that
a harmonic burst of any number of cycles can be sent to the transmitter with any desired time interval.
The other transducer, of 1.0-inch- diameter x 0.5-inch-thick PZT4, serves as a receiver, and is
connected to a Tektronix type 567 dual-trace oscilloscope via a Krohn-hite filter, which passes only
signals of a specified frequency range. One trace of the oscilloscupe is triggered directly from the
pulse generator to display received signals. The other oscilloscope trace is used for a Rutherford
Electronics time delay generator, which is triggered by the pulse generator and is used for accurate
measurements of arrival time with error less than #0.1 sec,

The tank is filled with Dow Corning 200 silicone oil used both as a cooling medium and as a
medium for transmitting the input pulses across the tank to the receiver, The cooling medium is
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Figure 17. Critical angle tank.

circulated through a Forma Scientific Model 2095 refrigerated bath which maintains the reguiicd
temperature. A sample holder 7 inches long x 8 inches deep that can hold a specimen up to 1 inch
thick is placed vertically inside the tank. A frozen soil specimen, 4.5 inches in diameter, is mounted
at the center of the sample holder so as to intercept the ultrasonic beam. The surface of the frozen
soil specimen is sealed by a thin vinyl sheet. The sample can be rotated about a vertical axis
running through the center of the tank, the angle of rotation of the sample from normal beam incidence
being indicated on a circular dial graduated in degrees and readable to 0.1° by means of a vernier
scale,

Theory

A transmitted scund wave, after passing through the fluid, strikes the sample at an angle i to
its normal (Fig. 18a). Of the incident dilatational energy, part is reflected back at an angle i and
part is transmitted into the sample. Since the dilatational velocity C_ in frozen soils (~ 4.0 km/sec)
greatly exceeds that (C) in silicone oil (~ 1.0 km/sec), the transmitted (refracted) portion of the
incident energy is rotated from the nonnal at an angle op > I acrording to Snell’s law:

C
0, = sin~! <-p- sin i). 1)
CW
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Silicone
Oil

Q. b. c.

Figure 18. Reflection and refraction geometry of a beam of dilatational pulses

on a slab of frozen soils in silicone oil. (a) Near normal incidence. (b) Crit-

ical refraction of the dilatational beam. (c) Critical refraction of the shear
beam.

The component of the particle motion not accounted for by the transmitted dilatation P forms
a shear wave S which is refracted at a small angle 08 (<8,) since C_ > C, (~2.0km/sec) > C,.
S is polarized within the plane of incidence again according to Snell’s law:

C
6 = sin~! <——s- sini ). ®
C

8
w

At the second surface: of the sample, since fluid cannot accommodate the shear mode, both wave-
trains are refracted back towards the normal at an angle i in the form of dilatational waves and
activate the receiving transducer. Each of the shear and dilatational signals striking the second
surface will, in general, give rise to both shear and dilatational waves, in the sample, which
emanate from the interface. However, by considering only the first portion of the received signal
we may eliminate these.

As i is increased by mechanical rotation of the sample, a critical angle i cp 18 reached (Fig.
i8b) at which P skims across the surface of the sample in a transitional stage between refraction
and reflection, At this stage, from eq 1,

C
C = Y _ . 3
.p s'n (icp)

As i is increased still further, P becomes totally reflected and at a second critical angle, i,

GCi c ), S skims across the surface of the sample (Fig. 18c). (In fact, reflection is complete only

if the sample is infinite in thickness. Signals incident at, or beyond, th: critical ar-le will ‘‘tunnel”’
through a finite sample in a fashion exactly analogous to the well-know 1 quantum mechanical
phenomenon. For samples greater than a few wavelengths, we may disregard this effect,) Again,
from eq 2,

¢ o= @
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At normal incidence the beam travels the shortest dimension of the sample and suffers minimal
attenuation. As i is increased, the wave path in the sample increases and the transmitted pulse
amplitude decreases. Wheni = i D P is removed from the transmitted beam and the resolved
amplitude for i , | exhibits, in practice, an intermediate minimum rather than an inflection on the
curve., Ati = f cg S 18 eliminated from transmission and one is left with an absolute minimum
aaplitude. In practice, the theoretical sequence of events outlined above is disorganized as a re-
sult of the interference hetween the incident beam and reflected beams within the specimen. Inter-
ference patterns often lead to difficulty in locating i, with precision. Therefore, another method,

a fluid displacement technique, was used to determine dilatational velocities in the present work.
The difference in delay time 6¢ between the pulses received after crossing the liquid path alone

as compared with their passage through liquid and specimen interposed at normal incidence produces
a value for C_ in the following way. 1f t, i3 tue time delay arising from transmission across the
tank through liquid alone and ! is the wave path in liquid, then t, = Iw/Cw. The time delay
arising from transmission across the tank when a sample is interposed at normal incidence is,

t + d
2 = b e
C Cp
where d is the sample thickness. Then the difference in both delays is,

t

ty - g

1
a
A
nl -
€
I
-cﬁl L=
S

Therefore, . s

c,d
c - —- . (6)
P d - Cot

The attenuztion is determined from the measurement of the ratio of the amplitudes Ai and 4 i
of the received waves for specimens of two different thicknesses L; and L, respectively
(Auberger and Rinehart, 1961). Namely, the attenuation coefficient a (nepers/cm) is given as:

In (Ai/Aj)

S— S

L - L,

or the value of @ is given as:

(/) (L - Ly)

"% (474)

where A is a wavelength,
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Results and Discussion

We examined chree standard types of soils, Ottawa sand, Hanover silt, and Goodrich clay, whose
gradation curves obtained according to ASTM test procedures are shown in Fig. 1. The size of the
specimen used for velocity measurements is 4.5 inches in diameter x 1.0 inch thick. All measure-
ments were made at subzero temperature due to the fragility of the sample holding device,

Dilatational wave veiocity

Velocity of dilatational waves was measured as a function of temperature and frequency. It
was found that the frequency has no distinguishable effect on dilatational velocities in the range
between 300 kHz and 1.2 MHz examined. Fig. 19 shows the observed dilatational velocities as a
function of temperature. The detailed discussion on :he correlation between the dilatational
velocity and temperature or unfrozen water content is presented in another part of this report,
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Figure 19, Dilatational velocity vs temperature.

Shear wave velocity

Measured shear velocities are shown in Figure 20 as a function of temperature. Although the
data are somewhat scattered, there is a general tendency for the shear velocity to decrease with
ascending temperature, The roll of unfrozen water in shear wave prepagation is more complicated
than the decrease of velocity as in dilatational wave propagation. Since liquid water cannot
accommodate the shear mode, shear waves are expected to attenuate severely while traveling through
a layer of liquid water. Therefore the crystalline matrices consisting of soil minerals and possibly
ice are the path through which shear waves propagate. ‘In view of the fact that the slope of velocity-
temperature curves does not differ markedly among the tested samples, soil mineral matrix might
play a major roll. Since the soil samples used are well packed, soil minerals must contact each other
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Figure 20. Shear velocity vs temperature for 20-30 Ot-
tawa sand, Hanover silt, and Goodrich clay.

closely. If the soil is not well packed, a different result might be obtained, The shear velocities of
crystalline rock and polycrystalline ice are about 3.0 km/sec and 1.6 km/sec respectively. The
measured shear velocities of frozen soils fall between these two bounds.

The shea velocity was found sensitive to frequency in an almost linear manner in the range of
0.3 MHz to 1.2 MHz. The velocity increases with increasing frequency, This trend was also re-
ported by Attewell (1970), who measured the shear velocity nf the Penrhyn slate of North Wales using
the critical angle method. He claimed that the shear wave dispersion resulting in frequency de-
pendence of velocity is a function of the critical angle technique and does not represent the shear
velocity conditions in the slate, Any increase of velocity with frequency implies distortion of the
spectrum of traversing waves through the solid. Although Attewell’s reasoning based upon much
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experimental evidence is convincing, the reason why the critical angle technique does not accarately
represent the shear conditions in the slate was not explained, -

Since we do not have sufficient experimental results, we are not able to evaluate the accuracy
of shear velocity measurements in frozen soils. Further efforts are needed to clarify this problem.

Attenuation of dilatational waves

Attenuation of waves in earth materials at high frequency is one of the least understood
phenomena, Wyllie et al, (1962) stated that attempts to measure attenuation in porous medcia at
frequencies higher than 100 kHz gave equivocal results. Auberger and Rinehart (1961) measured
attenuation of longitudinal waves in rocks by the pulse method in the frequency range 0.2 MHz to
1.0 MHz. 'No definite conclusion was made on the correlation between frequency and attenuation,
since attenuation does not follow any marked law of increase or decrease with frequency. Attewell
(1970) reported attenuation of dilatational waves in hard blue Penrhyn slate by the critical angle
technique in the frequency range 0.5 MHz to 5,0 MHz, He did not describe any difficulty or problem
concerning attenuation measurement,

We measured the attenuation of dilatational waves in frozen soils by using samples of different
thickness, - Although the wave patterns of the received signals for samples of different thickness
resemble each other and the amplitude of an initial rise or first arrival can be measured without
difficulty, we are plagued by lack of reproducibility. We do rot know whether this is inherent in
the frozen soils examined or is due to error in measurements, Therefore we are not able to present
our results in this report. :
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‘APPENDIX ‘A. ANALYTIC SOLUTIONS OF THE TRANSFORMED WAVE EQUATION
We represent u by
U=VY + VY XTIX + V XV x Ito (A1)

where ¢, ¥ and o are scalar fields, The representation A1 was chosen because it is ‘‘natural’’ to
the field equations (eq 3).

It is helpful to develop the following useful expressions
V.=V,
and

Vxqu:VxVxmex)+Vx VxV x Ux(ro) =

v x IWV « Tix) - ¥V orx)l +

+ Ux ¥ x WV .Tro) - v20roll.

We expand V2Fr x) as
v<rry) =T{V2(rx) - %x} + v,{%x}

- Trvex + Vieyl

as may easily be shown by expanding. So,
VX VxUu =-V><—T.TV2X— V XV x’r’."Vza.
If we insert these into the field equation (eq 3) and regroup terms, we find
le&ft// -+ 20Vl + @ xTE lp&fx - poiyxl +
+ Tripdlo - 261 = 0
VXx V x Iripojo puyvtos = 0,
In order to ensure that eq 3 is satisfied, it is sufficient that ¢, yx and o be solutions to

p&?t// -+ 20V =0, (A2a)

PRECEDING PAGE BLANK
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px - pvix = 0, (A2b)
and
pafa - uv?e = 0. (A2¢c)

We have not shown that all solutions to eq 3 can be expressed in terms of functions satisfying
eq A2 and Al. These solutions are, however, known to be complete (Stemberg, 1950),

We now Fourier transform the system and introduce the.expansions

V0, b)) = 3 % P (o, )Y (6, &), | (A32)
1=0 m=-1
X, 0, , ) = :zjl m%:_'l X" (£, @) Y™ (6, 8), (A3b)
and
alt, 6, ¢, ) = lijl n'l_'z_lo{"(r. ) YT (6, 8. (A30)

The terms of degree I = 0 in the expansions for ¥ and o have been omitted since they do not
contribute to the displacement field, .

The expansions A3a-A3c are inserted into the transformed versions of A2a-A2c. We make use
of eq 6 and 14 to simplify the result. If f is some scalar field, then by eq 6

VI =TFof + v,
and
w2 - B+ 2ot s Ryl (A%)
r

The resulting expressions are multiplied by Y'l" (6, &) sin 6 and integrated over 6 and ¢. We appeal
to the orthogonality relation 12. We then have

2
22y wp _M» ”} WG w) = 0, (A5a)
r A+ 2p 2
2
{af + gar s uP 1 ; 1)} X", @) = 0, (A5b)
r N -

and
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(Abc)

Each of the operators in brarkets is some form of the spherical Bessel’s operator. Its solutions

are well-known and they are

yr = A{”.(m)jl (kr) + Bi" W)y, (kr),

X' = CT ), (yr) + D @)y, 1),
and

of = EY ), (yn) + FI )y, G0, .
where

k - @

A+ 2p
P

and

y = 2

(A6a)

(A6b)

(A6c)

(A7)

(A8)

We wish now to relate U, V and W to ¢, x and 0. To do this, we will rearrange eq Al to

resemble eq 4. For convenience we will drop subscripts and superscripts.

We note immediately that

Oy =Ty + v,y

Also,
V xTrx =txg x T -Tx Viy)
= =T x Vy)
=-T x YX.

The third term can be expanded as

V x ¢ xTro = O(V « Tro) - v2 {rro)

- —?

= -Ttv*e < v@o) + v r?or )]
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Ti-rolo + a, [r'?‘&l,(xsa) - 2011 +

+ 9, 1;-30,(#’0) - 21}

Tirlg®el + Vlh"la + 0.0l

?{‘_’“r*_” a} v 91, o)l

Collecting these we have

u =Ty - i < 1)¢7}+ Vlh‘_llll + rla, o)l - r x Oy x.
r
Therefore
N+ 1)
up - gup - M2 D gp,
Vi = ! [l,’l'l" + 0, (ra{")].
and
Wm - m

Xy -

(A9a)

(A8b)

(A9c)
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APPENDIX B. THE TRACTION ON A SPHERICAL SURFACE
Let T be the elastic stress tensor resulting from a displacement field u. T is given by
T =XV - 0]+ p(Vu + V) (B1)
where u¥ is simply the transpose of 7w ' The force (not stress) acting across a surface whose

unit normal is Tis given by @ « T, which is a vector quantity. We represent the force acting
across a suzface whose normal is the radius vector T by

?‘ 1‘ =—r.P + le —-r-.x VlRo (B2)

Our problem is to relate the scalars P, @ and R to the scalars U, V and W which characterize the
displacement field.

We note first that
TeT = MV ¢ WT + uF - [Vu + uvi, (B3)
The divergence of u can bc expanded as
v . .u = ('r’a, +rl i) U« v V) | (B4)
since
Ve Tx 9 W) a-T(Vx VW
=-T: @ x VW
=0
becauseT x Vo ¥ must be normal toT. Equation B4 can be written as
v-u=08U+rtodv T . 0¥+l - TUL (B5)
The third term vanishes since d, commutes with ¥,, and ©,d,v is normal toT. The fourth term is

equal to (2/r)U as m:uy be seen by replacing ! U, with © - ‘r'a,. an equivalent expression. We
then have

Veus= (8, + Tz)U + r'lv’fV. (B6)
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The term 7" - {Vu + uVl}ineq B3 is more difficult to deal with, In terms of the coordinate
representation of u, (i.e. u, ug, and u¢).

u
T {Vu + a9l = 7'(26,u,) + ?[;aou' + ra' (To)] +

-1 1 Ug
+ @ [r — 6¢u' + 19, (—r—)] . (B7)

By inspection of eq 5 which explicitly gives the coordinate compor.onts of ¥y, we see that eq B7
may be rowritten as

u
. lou + vl = T@Iu) + v, (":') +

1 — s
+ ra,[; (0u0 + ¢u¢)] 5

We note that 6, commutes with & and $' The expression in square brackets represents the non-radial
portion of u and must therefore be identical with V,v - T x U, w. Since u, is identical with U,
we have

™. ivu + avi =—r.(26rV) +l Vlli + ra,{.l.vlv - l?x VIW}
r r r
or
T. | Vu + uvi =-r'(26,u) + O [E + r&,(lv)] -Tx W [rat(lw)] .
r r r

Combining the above results, we have

P

(A + 240 u + & u + A va, (B8a)
r r

y{ﬁ + 19, (l)} (B8b)
r r
R - ,‘{ra, (‘_:’ )} (BS)

(s}
It

and
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‘APPENDIX C. NUMERICAL TECHNIQUES

We outline, briefly, in this appendix the numerical techniques used in this study to a) generate
the suite of normal modes for a layered elastic sphere and b) evaluate various integrals of interest
associated with these modes.

For a given I and w, the generation of solution functions proceeds exactly as outlined in
Section B. 'The matrix inversion required by eq 45 and 46 was not done explicitly. We chose instead
to solve two sets of simultaneous linear equations, The Crout Reduction (Hildebrand, 1956) was
found to be particularly convenient.

Bessel functions were generated by using Miller’s well-known recurrence algorithm (Abramowitz
and Stegun, 1968). One consequence of this iechnique is that the accurate evaluation of a spherical
Bessel function for many values of its argument, as required, say, for integration, is a time-consuming
process. For such applications it would perhaps be more efficient to numerically solve Bessel's
equation, but computer memory limitations did not permit the additional coding this required.

In practice, the program was assigned a model and a value of I ané proceeded to compute trail
solutions for evenly spaced values of frequency. ' As the computation proceeded, indicator variables,
as explained in Section B, were monitored for a change of sign, which was taken to indicate a zero
crossing. - When this occurred, an estimate was made of the location of the zero crossing and the
algorithm described below was invoked to iteratively improve the estimate. In general, two applica-
tions of the following procedure sufficed to locate the eigenfrequency to within one part in 10°,

Gilbert and Backus (1967) observed that Rayleigh’s principle could be utilized to improve
estimates of eigenfrequencies obtained by coarser methods. Suppose that for some frequency w,
near an eigenvalue, w*, we have computed a trial solution and find that the stress-free surface con-
dition cannot be met. We may apply Rayleigh's principle, or perturbation theory, to the solution we
have generated to estimate the change in w the elimination of surface stress would produce. The
first order estimate for this change is given by

U, (0 )P, (0 + LA + DV, (6)Q, (o)}
bw = @royt LN 1N Y T Y INRNY (C1)

r

N
[ opr*URe) + 14 + DVE@Idr
0

We wili not derive eq C1 here. We then replace w by w + 8w and repeat the process. We chose to
terminate the iteration when |8w/(8w + w)| fell below 107,

The last point we wish to mention is the evaluation of integrals of the form

1= f" Z(w)dr (C2)
0
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where Z is some operator on the solution functions, U(r), etc. In general, we may expect Z to vary
appreciably over a length L of about

L - B (C3)

where V _ is the local compressional velocity. L is simply the wavelength of a compressional wave
of angular frequency . In computing /, the program was designed to utilize steps not exceeding
¢L,; where ¢ is a small (~ 3 x 10%) number and L, is the scale length appropriate to a given shell.
This technique yielded a reliably constant accuracy over many wide variations of scale without
extracting undue computing labor for small values of w. ;



